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Abstract

There exists a strong connection between numerical methods for the integration of
ordinary differential equations and optimization problems. In this paper, we try to discover
further their links. And we transform unconstrained problems to the equivalent ordinary
differential equations and construct the LRKOPT method to solve them by combining the
second order singly diagonally implicit Runge-Kutta formulas and line search techniques.
Moreover we analyze the global convergence and the local convergence of the LRKOPT
method. Promising numerical results are also reported.
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1. Introduction

In this paper, we mainly consider numerical methods for the following unconstrained opti-
mization problem

min
x∈Rn

f(x), (1.1)

where f is a continuously differentiable function. The main idea of solving the unconstrained
optimization problem (1.1) is that we search for the next iteration point

xk+1 = xk + αkdk

via choosing the descent direction dk and the step length αk based on the current iteration point
xk such that f(xk+1) satisfies some descent criteria, such as the Armijo line search criterion
[13, 27, 35].

It has been extensively studied for choosing the descent direction dk based on the Newton
direction (see [1, 2, 4, 6, 9]), the conjugate gradient direction (see [10, 14, 15]) and the negative
gradient direction (see [3, 5, 6, 16, 18, 30]) last decades, where ∇f(xk) and ∇2f(xk) are the
gradient and the Hessian matrix of the function f at the current point xk, respectively. But
there are few researches for other descent directions. In the next section, we will consider
search directions other than the negative gradient direction or the Newton direction. And we
construct the LRKOPT method that has the superlinear convergence and global convergence
by discretizing the following initial value problem of ordinary differential equations

dx

dt
= −∇f(x), (1.2)

x(0) = x0, (1.3)
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where x0 is an any given initial value. It is well-known that the solution x(t) of differential
equations (1.2)-(1.3) converges to the stable point x? of the function f as t tends to infinity,
namely limt→∞ ‖∇f(x(t))‖ = 0 (see [18, 22]).

There are some discussions on numerical methods for solving (1.2)-(1.3) in [30], which point
out the importance of studying this class of numerical methods. Schropp [32] applied linear
multistep methods to the gradient system (1.2)-(1.3) and studied the qualitative properties
of discrete solutions of (1.2)-(1.3). In [23], we give a reasonable explanation that Backward
Difference Formulas (BDFs) which are popular methods for solving stiff ordinary differential
equations are low efficient for the gradient system (1.2)-(1.3) on the view of unconstrained
optimization and we will restate the explanation in Section 2. Thus we mainly consider Runge-
Kutta methods for solving the gradient system (1.2)-(1.3).

This paper is organized as follows. In the next section we consider the second order Singly
Diagonally Implicit Runge-Kutta methods (SDIRK) for solving the gradient system (1.2)-(1.3)
and construct the LRKOPT method with the superlinear convergence for the unconstrained
optimization problem (1.1). In Section 3 we analyze the global convergence and the local
convergence of the LRKOPT method. Finally, we report some numerical results of the LRKOPT
method and the IMPBOT method which is given by Brown and Bartholomew-Biggs (see [6]) in
Section 4. Throughout the paper ‖ · ‖ denotes the Euclidean vector norm or its induced norm.

2. The LRKOPT Method

We know that the class of methods for solving the gradient system (1.2)-(1.3) need satisfy
the L stability via studying the linear test ordinary differential equation if those methods have
the good local behavior (see [23]). Because linear multistep methods except for the backward
Euler method do not satisfy the L stability, we focus on Runge-Kutta methods for solving the
gradient system (1.2)-(1.3).

Runge-Kutta methods for solving the gradient system (1.2)-(1.3) have the following general
form

Ki = h · g(xk +

s
∑

j=1

aijKj), i = 1, 2, · · · , s, (2.1)

xk+1 = xk +

s
∑

i=1

biKi, (2.2)

where g(x) = −∇f(x), h > 0 is the time step, aij and bi are constants. It is favorable for stiff
ordinary differential equations if the numerical method has the A stability. Because the highly
nonlinear problem (1.1) can introduce stiff ordinary differential equations (1.2)-(1.3). Thus we
consider implicit Runge-Kutta methods for solving the gradient system (1.2)-(1.3).

Before introducing the particular scheme for solving the gradient system (1.2)-(1.3) we give
some short descriptions of A-stable, L-stable and B-stable. A numerical method is called A-
stable if, for the linear test equation dx/dt = µx with Re(µ) ≤ 0 and for all time steps h ≥ 0,
the stability function R(z) = 1 + zbT (I − zA)−1e satisfies |R(z)| ≤ 1, where z = µh, the
elements of the matrix A are aij(i, j = 1, 2, · · · , s), the vector b equals to [b1, b2, · · · , bs]

T and
all elements of e are one (see [17, 34]). The step length h does not have the stable restriction if
the numerical method is A-stable. Furthermore the numerical method is A-stable and satisfies
limz→−∞ R(z) = 0 then it is called L-stable (see [17, 34]).

Let two sequences {xk} and {zk} of approximation computed by a Runge-Kutta method for
the same following autonomous differential equations

dx

dt
= g(x), g : Rn → Rn. (2.3)


