
Journal of Computational Mathematics, Vol.23, No.3, 2005, 247–260.

INTERPOLATION BY LOOP’S SUBDIVISION FUNCTIONS ∗1)

Guo-liang Xu
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences,

Beijing 100080, China)

Abstract

For the problem of constructing smooth functions over arbitrary surfaces from discrete
data, we propose to use Loop’s subdivision functions as the interpolants. Results on the
existence, uniqueness and error bound of the interpolants are established. An efficient
progressive computation algorithm for the interpolants is also presented.

Mathematics subject classification: 41A10, 41A15, 65D.
Key words: Interpolation, Loop’s subdivision function.

1. Introduction

The problem of constructing interpolants on surfaces arises in some application areas such
as characterizing the rain fall on the earth, the pressure on the wing of an airplane and the
temperature on a human body. The problem was first proposed as an open question by Barnhill
[5] in 1985. After that, a considerable number methods have been developed for dealing with
it (for surveys see [7], [12]). Most of these methods interpolate the scattered data over planar
or spherical domain surfaces. In [8] and [11], the domains are generalized to convex surface
and topological genus zero surface, respectively. Pottmann [17] presented a method which does
not possess similar restrictions on the domain surface but requires it to be of C2. In [6] this
restriction was left and the function on surface is constructed by transfinite interpolation. It
seems that, the currently known approaches possess restrictions either on domain surfaces or
functions on surfaces. The domain surfaces are usually assumed to be spherical, convex or
genus zero. The functions on surfaces are not always polynomial [6], [15] or rather higher
order polynomial [18]. The aim of this paper is to design a low order piecewise polynomial
interpolation scheme over triangulated surfaces.

In several recent developments in computer graphics and numerical analysis (see [2, 3, 4, 9,
10]), Loop’s subdivision (see [14]) surfaces and functions on surfaces have played a key role. In
these developments, Loop’s subdivision surfaces and function on surfaces are used to construct
the finite element function space in a discretization process of a partial differential equation.
However, the convergence analysis or error estimation in these discretization process require
the interpolation error estimation by the function in the finite element function space. Such a
result currently is not available. In this paper, we estimate the interpolation error bound and
further provide an efficient method for constructing smooth multi-resolution functions over a
surface. Precisely, we consider the following problem:

Given a discretized triangular surface mesh T ⊂ IR3 and a discretized function D ⊂ IRκ.
Each of the function values is attached to one vertex of the surface mesh. Our primary goal is
to construct smooth (non-discretized) representations for the surface functions that interpolate
the discretized data. Our secondary goal is to estimate the error of the interpolation. Our
tertiary goal is to establish a progressive computational method for the interpolation functions.

∗ Received October 13, 2003; final revised September 29, 2004.
1) Support in part by NSFC grants 10241004 and 10371130.



248 G.L. XU

We propose to use Loop’s subdivision functions as the interpolants. Results on the exis-
tence, uniqueness and error bound of the interpolants are established. An efficient progressive
computation algorithm for the interpolants is also presented.

The rest of the paper is organized as follows. In Section 2 we review some basic aspects on
Loop’s subdivision. In Section 3, we formulate the interpolation problem and then establish
the result on the solvability of the interpolation problem. Section 4 is devoted to the interpo-
lation error and convergence and Section 5 is for the efficient computation of the interpolation
functions. Numerical examples are given in Section 6.

2. Loop’s Subdivision Surfaces and Functions

Let us introduce some notations used in this paper:
S : domain surface of the interpolation, the limit surface of Loop’s subdivision.
T : a triangulation of S.
T (k) : a sequence of triangulation of S.
M : control mesh of T .
M (k) : control mesh of T (k).

In Loop’s subdivision scheme, the initial control mesh M (0) and the subsequent refined meshes
M (k) consist of triangles only. In the refinement, each triangle is subdivided into 4 sub-triangles.
Then the vertex position of the refined mesh is computed as the weighted average of the vertex
position of the unrefined mesh. Consider a vertex xk

0 at level k with neighbor vertices xk
i for

i = 1, · · · , n, where n is the valence of vertex xk
0 . The positions of the newly generated vertices

xk+1
i on the edges of the previous mesh are computed as

xk+1
i =

3xk
0 + 3xk

i + xk
i−1 + xk

i+1

8
, i = 1, · · · , n, (2.1)

where index i is to be understood modulo n. The old vertices get new positions according to

xk+1
0 = (1 − na)xk

0 + a
(

xk
1 + xk

2 + · · · + xk
n

)

, (2.2)

where a = 1
n

[

5
8 −

(

3
8 + 1

4cos 2π
n

)2
]

. Note that all newly generated vertices have a valence of 6,

while the vertices inherited from the original mesh at level zero may have a valence other than
6. We will refer to the former case as ordinary and to the later case as extraordinary. The limit
surface S of Loop’s subdivision is C2 everywhere except at the extraordinary points where it is
C1.

2.1. The Limit Surface Corresponding to Vertices

Lemma 2.1. Let x0
0 be a vertex with x0

i , i = 1, · · · , n, being the 1-ring neighbor vertices of the
initial control mesh M (0). Then all these vertices converge to a single position

vT
0 := (1 − nl)x0

0 + l

n
∑

i=1

x0
i , l = 1/[n + 3/(8a)] (2.3)

as the subdivision step goes to infinity (see [4] for the proof of the Lemma).

Let x1
0, x1

i , i = 1, · · · , n be the control vertices generated by subdivision once around x0
0 of

the initial control mesh M (0). Then

vT
0 = (1 − nl)x1

0 + l

n
∑

i=1

x1
i . (2.4)


