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Abstract

In this paper, the linear finite element approximation to the positive and symmetric,
linear hyperbolic systems is analyzed and an O(h2) order error estimate is established
under the conditions of strongly regular triangulation and the H

3-regularity for the exact
solutions. The convergence analysis is based on some superclose estimates derived in this
paper. Our method and result here are also applicable to general hyperbolic problems.
Finally, we discuss the linearized shallow water system of equations.
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1. Introduction

Since 1970’s, finite element method for solving partial differential equations has been suc-
cessfully applied to elliptic and parabolic problems, however, it is still not very popular for
hyperbolic problems. In view of that compared with the difference method, finite element
method is more flexible and adaptive, and easier to mathematically analyze, recently finite
element methods for hyperbolic problems have attracted more and more attention; see, e.g.,
[1-5] for the Galerkin method; [6-13] for the discontinuous Galerkin method; [14-17] for the
Petrov-Galerkin method; and [18-21] for the streamline diffusion method.

It is well known that for the k-th order finite element approximations to elliptic or parabolic
problems, the optimal order error estimate in L2 norm is of O(hk+1) order with the exact solu-
tion u in Hk+1(Ω). However, for linear hyperbolic problems, it is still an unsolved completely
problem that whether or not the finite element solutions admit this optimal order estimate.
Generally speaking, the convergence order of Galerkin method for hyperbolic problems is of
O(hk) order, that is one order lower than the approximation order of finite element space; cf.
[1] and [2]. And in [1], Dupont gave a counterexample by using third order Hermit element to
indicate that this convergence order is sharp. Since then, in order to obtain the high accuracy
and cope with the lower regularity of hyperbolic problems, the discontinuous Galerkin method
is proposed and used extensively in this area; cf. [6],[7],[8],[9],[12] and [13]. By this method, the

convergence order can be improved to O(hk+ 1
2 ), and recently some superconvergence results

are also given in [22] for elliptic problem by using discontinuous Galerkin method.
In the context of Galerkin method, under some assumptions on the finite element partition

and regularity of the exact solution, it is possible to obtain the optimal order error estimates
when linear finite elements are used; see, e.g.,[3] for bilinear rectangular element; and [5] for
linear triangular element imposed on uniform mesh partition. Obviously, the condition of
uniform mesh partition is not very interesting in the practical case.

In this paper, we will discuss the linear finite element approximation to positive and sym-
metric hyperbolic systems. Under the conditions of strongly regular triangulation (cf. [23]) and
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H3-regularity for the exact solutions, the optimal order error estimates are established. The
theoretical tools for the error analysis are some superclose estimates that are also derived in
this paper. Our method and result here are also applicable to general hyperbolic problems. To
author’s knowledge, very few optimal convergence order can be reached for hyperbolic prob-
lems, even in one dimensional case. Hence, our research work in this paper is theoretically
significant.

Let Ω ⊂ R2 be a polygonal domain, Jh = {e} be the finite element partition of domain Ω
parameterized by mesh size h so that Ω = ∪e∈Jh

{ e }. Introduce the linear finite element space
Sh defined by

Sh = { v ∈ C(Ω)
⋂

H1(Ω) : v|e is linear, ∀e ∈ Jh }.

We will use the standard notation for the Sobolev spaces W m
p (Ω) with corresponding norms

and seminorms, and when p = 2, W m
2 (Ω) = Hm(Ω), ‖ · ‖m,2 = ‖ · ‖m. Denote by (·, ·) and

‖ · ‖ the standard inner product and norm in L2(Ω) space. Let X be a Banach space, constant
T > 0, we will also use the space,

Lp(0, T ; X) = { v(t) : (0, T ) → X : ‖v‖Lp(X) = (

∫ T

0

‖v(t)‖p
X dt )

1
p < ∞}.

In this paper, letter C represents a generic constant independent of mesh size h.

The plan of this paper is as follows. In section 2, some superclose estimates for interpolation
are established. In section 3, the linear finite element approximations are analyzed for steady
and nonsteady positive and symmetric hyperbolic systems, respectively, and the optimal order
error estimates are derived. Finally, we will discuss the linearized shallow water system of
equations.

2. Superclose Estimates

Definition 2.1. Let e = 4p1p2p3, e′ = 4p′1p
′

2p
′

3, and e and e′ be two adjacent triangle elements
sharing a common edge in Jh. The quadrilateral e∪e′ is called as an approximate parallelogram
if (see figure 1)

| −→

p1p2 +
−→

p′1p′2 | = O(h2) , | −→

p2p3 +
−→

p′2p′3 | = O(h2). (2.1)

Definition 2.2. A triangulation Jh is called as strongly regular, if any two adjacent triangular
elements in Jh form an approximate parallelogram (see figure 1).

Figure 1. approximating parallelogram


