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Abstract

Regular assumption of finite element meshes is a basic condition of most analysis of
finite element approximations both for conventional conforming elements and nonconform-
ing elements. The aim of this paper is to present a novel approach of dealing with the
approximation of a four-degree nonconforming finite element for the second order elliptic
problems on the anisotropic meshes. The optimal error estimates of energy norm and L2-
norm without the regular assumption or quasi-uniform assumption are obtained based on
some new special features of this element discovered herein. Numerical results are given
to demonstrate validity of our theoretical analysis.
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1. Introduction

It is well known that Carey’s element [1] is a very famous four-degree triangle nonconforming
membrane element. Numerous studies have been advocated to its convergence analysis (see
[2],[3] and [4] for details). However, one of the drawbacks of the analysis of convergence of
above studies is that the regular assumption of the finite element meshes should be satisfied
, i.e. there exists a constant C > 0, such that for all element K, hK/ρK ≤ C, where hK

and ρK are the diameter of K and the biggest circle contained in K respectively. Therefore,
this restriction limits the applications of many elements of practical problems. In practice, the
solution of elliptic boundary problem may have anisotropic behavior in parts of the domain,
i.e. it varies significantly only in certain direction. In such cases it is an obvious idea to reflect
this anisotropy in the discretization by using anisotropic meshes with small mesh size in the
direction of rapid variation of solution and a larger mesh size in the perpendicular direction.

In recent years, some researchers have been interested in the study of theoretical analysis
and computations without the above regular assumption, i.e. anisotropic behavior, and paid
more attention to the interpolation error estimate of conforming Lagrange type elements [5,6,10]
and nonconforming C-R type element [7] with narrow edges or having anisotropic properties. In
these cases, the key problem is that the usual Sobolev theories (for example, Hilbert-Bramble
Lemma) can not be used directly. An example is given in [7].

In this paper, we focus on the study of convergence analysis of Carey’s element with the
narrow edges or anisotropic properties. The optimal error estimates are obtained by using
Lagrange interpolation results for conforming elements and some new properties discovered
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herein. The results and the approach of this paper are also valid for some other elements, such
as the Wilson element [4], the arbitrary quadrilateral quasi-Wilson element [8,9] and five-node
element [12] and so on . At the same time, we also present some computational results which
demonstrate the validity and coincidence of our theoretical analysis very well.

2. Carey’s Element and Some Lemmas

Let K be a triangle with vertices pi = (xi, yi), 1 ≤ i ≤ 3 , and λi be the area coordinate
corresponding to the vertices pi, `i = −−−−−→pi+1pi+2, (i = 1, 2, 3, mod(3)) be the three sides. Let S
denote the area of the triangle K and set the following remarks







ξ1 = x2 − x3, ξ2 = x3 − x1, ξ3 = x1 − x2,
η1 = y2 − y3, η2 = y3 − y1, η3 = y1 − y2,
ξ2
i + η2

i = `2
i , `2 = `2

1 + `2
2 + `2

3.

Then, the shape function on element K may be found by

u =

3
∑

i=1

uiλi + t(u)ϕ, (1)

where

ϕ = λ1λ2 + λ2λ3 + λ3λ1, (2)

and ui denotes the functional value of u at the vertex pi (i=1,2,3) of K respectively, and the
parameter t(u) is taken as

t(u) =
−4S

`2

∫

K

∆udxdy. (3)

Obviously, this element is a nonconforming membrane element and it is continuous at each
vertex of the element K. Let

u = u1λ1 + u2λ2 + u3λ3, u1 = t(u)ϕ. (4)

Then, u = ū + u1 , i.e. ū and u1 are the conforming part and nonconforming part of u
respectively.

Let Ω be the polygonal domain, Jh be a family of decomposition of Ω with Ω =
⋃

K∈Jh

K,

and diam(K) ≤ h ,∀ K ∈ Jh. For a given element K ∈ Jh, let −−→p1p2 be the longest edge of K.
Then we denote h1 = h1,K = meas(−−→p1p2) its length and by h2 = h2,K = 2S

h1,K
the thickness of

K perpendicularly to −−→p1p2. We assume that the element satisfies the maximum angle condition
and a coordinate system condition [11], but it is not necessary to satisfy the regular assumption
or quasi-uniform assumptions on meshes [4]. Let FK be an affine mapping from K̂ to K

FK :















x =
3
∑

j=1

x(pj)λj ,

y =
3
∑

j=1

y(pj)λj .

Let Vh be the associated Carey’s finite element space.

Vh = { v : v|K = v̂ ◦ F−1
K , v̂ ∈ PK , v(a) = 0, ∀ node a ∈ ∂Ω },

where PK = span{λ1, λ2, λ3, ϕ} is the shape function space.


