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Abstract

A new mixed Legendre-Hermite interpolation is introduced. Some approximation re-
sults are established. Mixed Legendre-Hermite pseudospectral method is proposed for
non-isotropic heat transfer in an infinite plate. Its convergence is proved. Numerical
results show the efficiency of this approach.
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1. Introduction

Spectral methods have been successfully used for numerical simulations of various problems
in science and engineering, such as the Fourier spectral method for periodic problems, and the
Legendre and Chebyshev spectral methods for bounded rectangular domains, see [2, 3, 5, 7, 9,
10]. Some authors also studied the Hermite spectral method for the whole line and the Laguerre
spectral method for the half line, see [4, 6, 8, 11, 12, 16, 18, 19, 21].

There are three kinds of Hermite polynomial approximations. If the exact solutions grow
fast at the infinity, then we usually take the Hermite polynomials Hn(z) as the base functions

as in [11], which are mutually orthogonal associated with the weight function e−z2

. But in many
cases, such as nonlinear wave equations, the solutions decay to zero at the infinity, and possess
certain conservations which play important role in theoretical analysis. Thereby it seems better

to use the Hermite functions e−
z2

2 Hn(z) as in [13], which form the L2(−∞,∞)-orthogonal
system. Accordingly, the numerical solutions also keep certain conservations as in continuous
cases. Furthermore, for some problems, such as heat transfer process, the solutions usually
decay exponentially at the infinity. In this case, we prefer to the generalized Hermite functions
e−z2

Hn(z) , which are mutually orthogonal with respect to the weight function ez2

, see [8].
In this paper, we consider non-isotropic heat transfer process in an infinite plate. The

simplest way is to confine our calculation to a sufficiently large subdomain with certain ar-
tificial boundary condition. However, it causes additional errors. The authors proposed a
mixed Legendre-Hermite spectral method for solving this problem, see [15]. However, it is
more convenient to use pseudospectral method in actual computation, since we only need to
evaluate unknown functions at the interpolation nodes. Especially, it is much easier to deal
with nonlinear heat transfer process.

The aim of this paper is to develop the mixed pseudospectral method for non-isotropic heat
transfer in an infinite plate, by using the Legendre interpolation in a direction, and the Hermite
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interpolation in another direction. As we know, there have been sharp results on the Jacobi
interpolation, see [14]. Thus it suffices to study the Hermite interpolation precisely. Like the
Hermite polynomial approximations, there have been also two kinds of Hermite interpolations
which have the same interpolation nodes, but different weights of numerical quadratures, cor-

responding to the base functions Hn(z) and e−
z2

2 Hn(z), respectively, see [13, 16]. Whereas the
solutions of transfer process decay exponentially at the infinity. Thus we introduce a new Her-
mite interpolation corresponding to the base functions e−z2

Hn(z), which could fit the asymp-
totic behavior of such solutions properly. Then we propose a new mixed Legendre-Hermite
pseudospectral method for non-isotropic heat transfer in an infinite plate. Numerical results
demonstrate the high accuracy in the space of this approach. We also establish some basic
results on this new mixed Legendre-Hermite interpolation, from which the convergence of pro-
posed scheme follows. These results also play important roles in forming and analyzing other
related spectral methods for an infinite strip.

The paper is organized as follow. In the next section, we introduce the new mixed Legendre-
Hermite interpolation and establish some basic approximation results. Then we describe the
mixed Legendre-Hermite pseudospectral method and its implementation, and present some
numerical results in Section 3. We prove the convergence of proposed scheme in Section 4. The
final section is for concluding remarks.

2. Mixed Legendre-Hermite Interpolation

In this section, we introduce the new mixed Legendre-Hermite interpolation.

2.1 Legendre-Gauss-Lobatto interpolation

We first recall the Legendre-Gauss-Lobatto interpolation. Let I = {x| |x| < 1}. For any
integer r ≥ 0, we define the Sobolev space Hr(I) as usual, with the inner product (u,w)r,I , the
semi-norm |u|r,I and the norm ||u||r,I . In particular, (u,w)I = (u,w)0,I and ||u||I = ||u||0,I .
Moreover, H1

0 (I) = { u| u ∈ H1(I) and u(1) = u(−1) = 0}.
Denote by Lm(x) the standard Legendre polynomial of degree m,m = 0, 1, · · ·. They satisfy

the recurrence relation

(2m+ 1)Lm(x) = ∂xLm+1(x) − ∂xLm−1(x), m ≥ 1, (2.1)

and form the L2(I)-orthogonal system, i.e.,
∫

I

Lm(x)Lm′ (x)dx =
2

2m+ 1
δm,m′ (2.2)

For any u ∈ L2(I), we have that

u(x) =

∞
∑

m=0

ûmLm(x), ûm = (m+
1

2
)

∫

I

u(x)Lm(x)dx. (2.3)

For any integer M ≥ 0, PM stands for the set of all polynomials of degree at most M .
Furthermore, P0

M = {v | v ∈ PM , v(1) = v(−1) = 0}.
The orthogonal projection PM : L2(I) → PM is defined by

(PMu− u, φ)I = 0, ∀ φ ∈ PM . (2.4)

For description of approximation results, we introduce the space Hr
A(I) with integer r ≥ 0,

equipped with the following semi-norm and norm

|u|r,A,I = ||(1 − x2)
r
2 ∂r

xu||I , ||u||r,A,I = (
r

∑

k=0

|u|2k,A,I)
1
2 .


