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Abstract

The steepest descent method is the simplest gradient method for optimization. It is
well known that exact line searches along each steepest descent direction may converge
very slowly. An important result was given by Barzilar and Borwein, which is proved to
be superlinearly convergent for convex quadratic in two dimensional space, and performs
quite well for high dimensional problems. The BB method is not monotone, thus it is
not easy to be generalized for general nonlinear functions unless certain non-monotone
techniques being applied. Therefore, it is very desirable to find stepsize formulae which
enable fast convergence and possess the monotone property. Such a stepsize ay for the
steepest descent method is suggested in this paper. An algorithm with this new stepsize
in even iterations and exact line search in odd iterations is proposed. Numerical results
are presented, which confirm that the new method can find the exact solution within 3
iteration for two dimensional problems. The new method is very efficient for small scale
problems. A modified version of the new method is also presented, where the new technique
for selecting the stepsize is used after every two exact line searches. The modified algorithm
is comparable to the Barzilar-Borwein method for large scale problems and better for small
scale problems.
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1. Introduction

The steepest descent method, which can be traced back to Cauchy (1847), is the simplest
gradient method for unconstrained optimization:

min f(z), (L1)

where f(z) is a continuous differential function in R™. The method has the following form:

Tpy1 = Tk + ax(—gr), (1.2)

where gr = g(xx) = Vf(xy) is the gradient vector of f(z) at the current iterate point wj
and ai > 0 is the stepsize. Because the search direction in the method is the opposite of
the gradient direction, it is the steepest descent direction locally, which gives the name of the
method. Locally the steepest descent direction is the best direction in the sense that it reduces
the objective function as much as possible.

The stepsize ay; can be obtained by exact line search:

aj, = argmin{f(zx + a(=gx))}, (1.3)

or by some line search conditions, such as Goldstein conditions or Wolfe conditions (see Fletcher,
1987). It is easy to show that the steepest descent method is always convergent. That is,
theoretically the method will not terminate unless a stationary point is found.
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However, even for the simplest case when the objective function f(z) is a strictly convex
quadratic, namely
flx) =gz + %wTHx, (1.4)
where g € R, H € R"*" symmetric and positive definite, the steepest descent method may not
be very efficient. Assume that we are using exact line searches. Though we can show that the
method converges linearly (see Akaike, 1959), the convergence rate can be very slow, especially
when the condition number of the Hessian matrix H is very large, as the Q-linear fact of the
convergence is
)\1 (H) - /\n (H)

where A; (H) and A\, (H) are the largest and smallest eigenvalues of H respectively. Forsythe(1968)
gives an interesting analysis to show that the gradients g(x) will approach zero eventually along
two direction alternatively.

An surprising result was given by Barzilai and Borwein (1988), where gives formulae for the
stepsize «y which lead to superlinear convergence. The main idea of Barzilai and Borwein’s
approach is to use the information in the previous interation to decide the stepsize in the current
iteration. The iteration (1.2) is viewed as

(1.5)

Thy1 = Tk — Digr, (1.6)

where Dy = aiI. In order to force the matrix Dy having certain quasi-Newton property, it is
reasonable to require either
min |[sy—1 — Dyyr—1l2 (1.7)

or
min||Dk_lsk,1 — Yr—1ll2, (1.8)

where sx_1 = x — k-1 and Yyx—1 = gr — gr—1, because in a quasi-Newton method we have
that zg11 =z — B,:lgk and the quasi-Newton matrix By, satisfies the condition

Bksk—l = Yk—1- (1.9)

Now, from Dy = oI and relations (1.7)-(1.8) we can obtain two stepsizes:

T
Skp—1Yk—1
aj = =1L (1.10)
lyk-113
and )
ay, = 7HTS’“‘1”2 (1.11)
Sp—1Yk—1

respectively. For convex quadratic function in two variables, Barzilar and Borwein (1988) shows
that the gradient method (1.2) with «y, given by (1.10) converges R-superlinearly and R-order
is \/§

The result of Barzila and Borwein(1988) has triggered off many researches on the steepest
descent method. For example, see Dai(2001), Dai et al(2002), Dai and Yuan(2003), Dai and
Zhang(2001), Fletcher (2001), Friedlander et al. (1999), Nocedal et al(2000) and Raydon(1993,
1997).

The BB method performs quite well for high dimensional problems. The BB method is
not monotone, and it is not easy to generalized to general nonlinear functions unless certain
non-monotone techniques being applied. Therefore, it is very desirable to find stepsize formula
which enables fast convergence and possesses the monotone property.

This paper tries to propose such a stepsize «y for the steepest descent method. Due to
the results of Forsythe(1968), the behave of steepest descent method for higher dimensional



