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Abstract

An effective continuous algorithm is proposed to find approximate solutions of NP-hard

max-cut problems. The algorithm relaxes the max-cut problem into a continuous nonlinear

programming problem by replacing n discrete constraints in the original problem with one

single continuous constraint. A feasible direction method is designed to solve the resulting

nonlinear programming problem. The method employs only the gradient evaluations of

the objective function, and no any matrix calculations and no line searches are required.

This greatly reduces the calculation cost of the method, and is suitable for the solution

of large size max-cut problems. The convergence properties of the proposed method to

KKT points of the nonlinear programming are analyzed. If the solution obtained by the

proposed method is a global solution of the nonlinear programming problem, the solution

will provide an upper bound on the max-cut value. Then an approximate solution to the

max-cut problem is generated from the solution of the nonlinear programming and provides

a lower bound on the max-cut value. Numerical experiments and comparisons on some

max-cut test problems (small and large size) show that the proposed algorithm is efficient

to get the exact solutions for all small test problems and well satisfied solutions for most

of the large size test problems with less calculation costs.
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1. Introduction

The max-cut problem is to partition the vertex set of an undirected graph, denoted by
G(V, E), into two parts in order to maximize the sum of the weights on the edges between these
two parts, where V with |V | = n is the set of n vertices and E the edge set of the graph. This
problem has long been known to be NP-hard, and it is solvable in polynomial time only for
some special classes of graphs [10]. Because of its theoretical and practical importance, and
because efficient algorithms for NP-hard combinatorial optimization problems are unlikely to
exist, many approximate algorithms (see [11],[15],[21],[23]) have been proposed to solve max-cut
problems at an approximation factor ρ, that is, to find a cut (S, S̄) such that w(S, S̄) ≥ ρw∗,
where S and S̄ = V \S denote the cut, w(S, S̄) is the value of the cut (S, S̄), w∗ is the max-
cut value, and ρ is generally called the performance guarantee of an algorithm. Among these
approximate algorithms, the most famous is the randomization algorithm with performance
guarantee ρ = 0.87856 proposed by Goemans and Williamson [9]. The algorithm relaxes each
binary variable in {−1, 1} to a unit vector in space Rn to form a semi-definite programming
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problem, hence increasing the problem dimension from n to n × n, and the resulting SDP
problem is then solved using any existing semi-definite programming algorithms, for example,
interior algorithms. Then an approximate solution to the max-cut problem is generated from
the optimal solution of the relaxed SDP problem using a randomization algorithm. Although
extremely interesting because Goemans and Williamson’s algorithm has the best worst case
performance guarantee, it is of complex design and its computation time may prohibitive from
large scale max-cut problems [7]. For solving large scale max-cut problems, some nonlinear
programming methods are proposed in [6],[7],[12],[18]. The strengthened semi-definite pro-
gramming relaxation [4] and the rank two relaxation [7] of max-cut problems are modifications
of Goemans and Williamson’s work. The algorithm in [22] generates an approximate solution
to the max-cut problem by minimizing the largest eigenvalue of the matrix that is the sum of
the Laplacian matrix of the graph and a variable diagonal matrix. Since the algorithm calcu-
lates the largest eigenvalues of a sequence of given matrices satisfying the constraints and the
objective function in minimization is not differentiable everywhere, it is of complex design and
not applicable for the solution of large scale max-cut problems.

In this paper, we present an effective continuous algorithm for approximate solutions of large
scale max-cut problems. The algorithm relaxes the max-cut problem into a continuous nonlinear
programming problem that finds the largest eigenvalue of the Laplacian matrix of the underlying
graph by maximizing a convex quadratic function subject to a single constraint. The constraint
restricts the length of the variable vectors. An efficient feasible direction method is used to
perform the maximization of the resulting nonlinear programming problem. The method only
employs the gradient evaluations of the objective function and no any matrix calculations and
no line searches are required. This greatly reduces the calculation cost in the implementation
of the algorithm and increases the efficiency, and makes the algorithm applicable to large scale
max-cut problems. The convergence of the feasible direction method to KKT points of the
nonlinear programming is proved. If the solution obtained by the feasible direction method
is a global solution of the resulting nonlinear programming, the solution provides an upper
bound on the optimal value of the max-cut. A feasible solution to the max-cut problem can
then be generated from the solution of the nonlinear programming, and provides a lower bound
for the max-cut value. Numerical experiments and comparisons on some well-known max-cut
test problems (small size) and on some large size problems that are randomly generated by
the procedure rudy are made to show the efficiency of the proposed method on both the
computation time and resulting solutions.

Let wij = wji be the weight on edge eij ∈ E of a graph G(V, E), where wij = 0 if there is no
edge connecting vertices Vi and Vj . Using the Laplacian matrix of the graph L = 1

4 (Diag(We)−
W ) = (Lij)n×n with weight matrix W = (wij)n×n, the max-cut problem can be expressed as

(MC) :
{

Max xT Lx

s.t. x2
i = 1, i = 1, · · · , n,

where

Lij =

{
−wij , i 6= j,∑n

k 6=i wik, i = j,

The Laplacian matrix L is positive semi-definite. The constraints in (MC) restrict each variable
taking values either 1 or -1, and hence it is a combinatorial optimization problem. Goemans
and Williamson in [9] relaxe the problem to formulate a semi-definite programming problem by


