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Abstract

In this paper, the multisymplectic Fourier pseudospectral scheme for initial-boundary
value problems of nonlinear Schrödinger equations with wave operator is considered. We in-
vestigate the local and global conservation properties of the multisymplectic discretization
based on Fourier pseudospectral approximations. The local and global spatial conservation
of energy is proved. The error estimates of local energy conservation law are also derived.
Numerical experiments are presented to verify the theoretical predications.
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1. Introduction

The nonlinear Schrödinger equations with wave operator (NSEW)

∂2ψ

∂t2
− ∂2ψ

∂x2
+ i

∂ψ

∂t
+ g(|ψ|2)ψ = 0, (1.1)

is one of the most important models of mathematical physics, with applications in different
fields such as plasma physics, nonlinear optics, water waves and biomolecular dynamics. In this
work, we will concentrate on equation (1.1) subject to initial-boundary conditions

ψ(0, t) = ψ(L, t),
ψ(x, 0) = ψ0, ψt(x, 0) = ψ1.

(1.2)

The important feature of problem (1.1)-(1.2) is the following energy conservation law

‖ψt‖2 + ‖ψx‖2 +
∫ L

0

Q(|ψ|2)dx = const., (1.3)

where Q is a primitive function of g, defined by

Q(s) =
∫ s

0

g(x)dx.

Several numerical methods have been investigated for solving equation (1.1), such as finite
difference methods with conservative type [1, 2].

Bridge and Reich presented a multisymplectic integrator based on a multisymplectic struc-
ture of some Hamiltonian PDEs, such as Schrödinger equations and Klein-Gordon equations
[3, 4]. The theoretical results indicated that significant features of the multisymplectic inte-
grator are excellent for local invariant properties. Many numerical experiments demonstrated
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that the multisymplectic-preserving methods can preserve local and global conservation prop-
erties for long time computations [3, 4, 6, 9, 10, 11, 12, 13]. Moreover, when the Hamiltonian
function is quadratic, the multisymplectic integrators preserve discrete local energy and local
momentum exactly. However, error estimates of energy and momentum conservation laws for
the multisymplectic integrator in the literature remain very limited. Recently, Hong and Li
[10] used Runge-Kutta methods to construct multisymplectic schemes for the nonlinear Dirac
equations and presented the error estimates of local and global conservation laws of energy and
momentum.

Fourier pseudospectral methods have been proven very powerful for periodic initial value
problems with constant coefficients. The well known results include spectral accuracy for
smooth solutions and dispersion free. These properties are important in the numerical sim-
ulation of some physical phenomena.

The NSEW admits a multisymplectic Hamiltonian formulation. It is our objective in this
paper to apply the multisymplectic Fourier pseudospectral method [9] to the equation and
discuss properties of energy conservation law.

This paper is structured as follows. In Section 2, the multisymplectic Hamiltonian formu-
lation for NSEW is established and some conservation properties are obtained. Section 3 is
concerned with multisymplectic Fourier pseudospectral discretizations and spatial conservation
laws of energy. Section 4 involves the construction of fully discretizations scheme and error
estimates of energy conservation law. Numerical experiments are given in Section 5. Finally,
Section 6 contains concluding remarks.

2. Multisymplecticity and Local Conservation Law

A Hamiltonian differential equation is said to be multisymplectic if it can be written as

M∂tz + K∂xz = ∇zS(z), (2.1)

where ∂t and ∂x are the operators of total differentiation with respect to t and x, respectively;
M, K ∈ Rd×d are skew-symmetric; z(x, t) is the vector of state variables and S : Rd → R1 is a
smooth function; ∇zS(z) denotes the gradient of the function S = S(z) with respect to variable
z.

According to [3, 4], an important consequence of multisymplecticity is that the system (2.1)
has a multisymplectic conservation law (MSCL):

∂tω + ∂xκ = 0, (2.2)

where ω and κ are pre-symplectic forms

ω = dz ∧ M+dz, κ = dz ∧ K+dz, (2.3)

which define a symplectic space-time structure. Here ∧ is the exterior multiplication of the two
vectors, and M+ and K+ satisfy

M = M+ + M− and K = K+ + K−,

with
MT

+ = −M− and KT
+ = −K−.

For example, M+ and K+ can be taken as the upper triangular part of matrix M and K,
respectively [8].

The MSCL (2.2) is a local property which indicates that symplecticity for Hamiltonian
PDEs can be vary locally over the spatial domain.

The system (2.1) has local energy conservation law (LECL)

∂tE + ∂xF = 0, (2.4)


