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Abstract

The analytic and discretized dissipativity of nonlinear infinite-delay systems of the form

x′(t) = g(x(t), x(qt))(q ∈ (0, 1), t > 0) is investigated. A sufficient condition is presented

to ensure that the above nonlinear system is dissipative. It is proved the backward Euler

method inherits the dissipativity of the underlying system. Numerical examples are given

to confirm the theoretical results.
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1. Introduction

Let H be a complex Hilbert space with the inner product 〈·, ·〉 and ‖ · ‖ the correspond-
ing norm, X a dense continuously imbedded subspace of H . Consider the delay differential
equations (DDEs) {

x′(t) = g(t, x(t), x(α(t))), t ≥ 0,

x(t) = ϕ(t), t ∈ [ inf
s≥0

α(s), 0], (1)

where g : [0, +∞) × X × X → H, ϕ(t) and α(t) are given functions with α(t) ≤ t for all t ≥ 0.
Many dynamical systems are characterized by the property of possessing a bounded absorb-

ing set which all trajectories enter in finite time and thereafter remain inside. In the study of
dissipative systems it is often the asymptotic behaviour of the system that is of interest, and so
it is highly desirable to have numerical methods that retain the dissipativity of the underlying
system.

In 1994, Humphries and Stuart[5, 6] first studied the dissipativity of Runge-Kutta methods
for dynamical systems without delay. Later, many results on the dissipativity of numerical
methods for dynamical systems without delays were found[7, 8, 20]. For DDEs with constant
delay, i.e., τ(t) ≡ τ , Huang[9, 10] gave a sufficient condition for the dissipativity of the theo-
retical solution, and investigated the dissipativity of (k, l)-algebraically stable[3] Runge-Kutta
methods and G(c, p, 0)-algebraically stable[13] one-leg methods. In 2004, Tian[18] studied the
dissipativity of DDEs with a bounded variable lag and the numerical dissipativity of θ-method.
Moreover, Wen (Wen L.P., Numerical stability analysis for nonlinear Volterra functional dif-
ferential equations in abstract spaces(in Chinese), Ph.D.Thesis, Xiangtan University, 2005.)
discussed the dissipativity of Volterra functional differential equations, and further investigated
the disspativity of DDEs with piecewise delays and a class of linear multistep methods.
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An interesting case of (1) is the pantograph equation, corresponding to

α(t) = qt, q ∈ (0, 1),

which can be viewed as a representative of infinite time delay. The pantograph equation arises
in quite different fields of pure and applied mathematics such as number theory, dynamical
systems, probability, mechanics and electrodynamics[2, 11]. In particular, it was used by Ock-
endon and Tayler[17] to study how the electric current is collected by the pantograph of an
electric locomotive, from where it gets its name.

In early work, a constant stepsize was considered for discretization of pantograph equations.
As pointed out in Liu[15, 16], however, this kind of stepsize precludes long time integration
due to computer memory restrictions. In order to overcome this difficulty, Liu[15] transformed
the pantograph equation into a differential equation with a constant delay by a change of
variable, suggested by Jackiewicz [12]. Later, Liu[16] and Bellen, Guglielmi and Torelli [1]
proposed non-constant stepsize strategies where the stepsizes are geometrically increasing and
they investigated the stability of the θ-method.

Recently, many papers have dealt with exact and discretized stability of pantograph equa-
tions (see, e.g.,[1, 11, 16]). But up to now, no results of dissipativity have been known for the
pantograph equation and its discrete counterpart.

In this paper, we transform the pantograph equation into a non-autonomous DDE with a
constant delay by a change of variable, then investigate the dissipativity of the resulting DDE
and the backward Euler method. A sufficient condition is presented to ensure that the above
system is dissipative. It is shown that the backward Euler method inherits the dissipativity of
the underlying system.

2. Dissipativity of DDEs

Consider pantograph equation{
x′(t) = g(x(t), x(qt)), t ≥ 0,

x(0) = x0,
(2)

where q is a constant with 0 < q < 1, and g satisfies

Re〈u, g(u, v)〉 ≤ γ + α‖u‖2 + β‖v‖2, u, v ∈ X, (3)

with γ, α and β denoting real constants.
By the change of the independent variable y(t) = x(et)(see [12, 15]), (2) can be transformed

into the constant delay differential equation{
y′(t) = f(t, y(t), y(t − τ)), t ≥ 0,

y(t) = ϕ(t), t ≤ 0,
(4)

where τ = −logq and
f(t, y(t), y(t − τ)) = etg(y(t), y(t − τ)). (5)

It follows from (3) and (5) that

Re〈u, f(t, u, v)〉 ≤ et(γ + α‖u‖2 + β‖v‖2), t ≥ 0, u, v ∈ X. (6)

Definition 1. The evolutionary equation (2) is said to be dissipative in H if there is a bounded
set B ⊂ H such that for all bounded sets Φ ⊂ H there is a time t0 = t0(Φ), such that for all
initial values x0 contained in Φ, the corresponding solution x(t) is contained in B for all t ≥ t0.
B is called an absorbing set in H.


