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Abstract

In this article we define a surface finite element method (SFEM) for the numerical

solution of parabolic partial differential equations on hypersurfaces Γ in R
n+1. The key

idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of

simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space

of functions is then defined by taking the continuous functions on Γh which are linear affine

on each simplex of the polygonal surface. We use surface gradients to define weak forms

of elliptic operators and naturally generate weak formulations of elliptic and parabolic

equations on Γ. Our finite element method is applied to weak forms of the equations. The

computation of the mass and element stiffness matrices are simple and straightforward.

We give an example of error bounds in the case of semi-discretization in space for a fourth

order linear problem. Numerical experiments are described for several linear and nonlinear

partial differential equations. In particular the power of the method is demonstrated by

employing it to solve highly nonlinear second and fourth order problems such as surface

Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean

curvature flow.
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1. Introduction

Partial differential equations on surfaces occur in many applications. For example, tradi-

tionally they arise naturally in fluid dynamics and material science and more recently in the

mathematics of images. In this paper we propose a mathematical approach to the formulation

and finite element approximation of parabolic equations on a surface in R
n+1 (n = 1, 2). We

give examples of linear and nonlinear equations. In particular we show how surface level set

and phase field models can be used to compute the motion of curves on surfaces.
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1.1. The diffusion equation

Conservation on a hypersurface Γ of a scalar u with a diffusive flux −D∇Γw, where D is

the diffusivity tensor and w is a scalar, leads to the diffusion equation

ut −∇Γ · (D∇Γw) = 0 (1.1)

on Γ. Here ∇Γ is the tangential or surface gradient. If ∂Γ is empty then the equation does not

need a boundary condition. Otherwise we can impose Dirichlet or no flux boundary conditions

on ∂Γ. Choosing various constitutive relations to define the relationship between the flux and

u leads to a variety of second and fourth order linear and nonlinear parabolic equations. For

example the constitutive relations w = u and w = −∆Γu lead to linear second and fourth order

diffusion equations.

1.2. The finite element method

In this paper we propose a finite element approximation based on the variational form

∫

Γ

utϕ+

∫

Γ

D∇Γw · ∇Γϕ = 0 (1.2)

where ϕ is an arbitrary test function defined on the surface Γ in R
3 with ∂Γ empty. This

provides the basis of our surface finite element method (SFEM) which is applicable to arbitrary

n–dimensional hypersurfaces in R
n+1 (curves in R

2) with or without boundary. Indeed this is

the extension of the method from [10] for the Laplace-Beltrami equation, which was extended

to linear second order diffusion equations on moving surfaces in [12]. We focus our description

on the case n = 2 but observe that the approach is directly applicable to n = 1.

The principal idea is to use a polyhedral approximation of Γ based on a triangulated surface.

It follows that a quite natural local piecewise linear parametrization of the surface is employed

rather than a global one. The finite element space is then the space of continuous piecewise

linear functions on the triangulated surface. The implementation is thus rather similar to that

for solving the diffusion equation on flat stationary domains. For example, for w = u, the

backward Euler time discretization leads to the SFEM scheme

1

τ

(

Mαm+1 −Mαm
)

+ Sαm+1 = 0

where M and S are the surface mass and stiffness matrices and αm is the vector of nodal

values for the approximation of u at time tm. Here, τ denotes the time step size. Observe that

this approach to evolutionary surface partial differential equations was used in [11] to evolve a

surface by mean curvature flow. See also [5].

1.3. Level set or implicit surface approach

An alternative approach to our method based on the use of (1.2) is to embed the surface in a

family of level set surfaces [1, 3, 4, 13, 14, 21, 30]. This Eulerian approach can be discretized on

a Cartesian grid in R
n+1 and has the usual advantages and disadvantages of level set methods.

Equations on surfaces also arise in phase field models [7, 19, 25].


