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Abstract

In this paper, we consider the static output feedback (SOF) H∞-synthesis problem

posed as a nonlinear semi-definite programming (NSDP) problem. Two numerical algo-

rithms are developed to tackle the NSDP problem by solving the corresponding Karush-

Kuhn-Tucker first-order necessary optimality conditions iteratively. Numerical results for

various benchmark problems illustrating the performance of the proposed methods are

given.
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1. Introduction

In this paper, we consider the following NSDP problem:

(P0) :

{

min
X,V, γ

γ

s.t. H(X, γ) = 0, Y (X, V, γ) ≺ 0, V ≻ 0,
(1.1)

where γ ∈ IR+, and H : IRr×t ×Sn × IR+ → Sn, Y : IRr×t ×Sn ×Sn × IR+ → Sn are assumed

to be sufficiently smooth matrix functions. In the considered optimal control applications the

variable X is a decomposition of a matrix pair (F, L) ∈ IRr×t × Sn, where Sn denotes the set

of real symmetric n× n matrices. The problem (1.1) is a nonlinear semi-definite programming

and is generally non-convex.

In recent years there were several attempts to employ the available successful computational

techniques in nonlinear optimization to solve various NSDP problems numerically. Such NSDP

problems represent a variety of applications in system and control theory; see among others

[6, 7, 9, 12, 14, 17, 18, 19, 22, 24, 32]. In particular, the above NSDP problem (1.1) represents

a wide range of applications in system and control theory; see, e.g., the benchmark collection

COMPleib [25].

By solving (1.1) we mean computing a feasible point (X, V, γ) that satisfies the set of equality

and inequality constraints as well as enforcing the objective γ to attain its least possible value.

Due to the difficulties in solving problem (1.1) numerically, however, in most of the above

citations the attempts were only to compute suboptimal solution.

The main goal of this paper is to propose two first-order methods for solving (1.1) that

take advantage of the problem structure and use inexact computations. In these methods we
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compute a stationary point of the above optimization problem by solving numerically the non-

linear system of equations resulting from the Karush-Kuhn-Tucker (KKT) first-order necessary

optimality conditions. It is particularly important in the proposed methods to deal with a

scalar objective function together with matrix variables.

This paper is organized as follows. In the next section we present the problem formulation

and then we state the assumptions imposed on the problem (1.1). In addition, we obtain the

nonlinear system of equations resulting from the first-order necessary optimality conditions of

the problem (1.1). In Section 3 we develop two first-order methods for computing approximately

a stationary point of the problem (1.1). In Section 4 we test numerically the proposed algorithms

through several test problems from the benchmark collection COMPleib [25].

Notations: For a matrix M ∈ IRn×n the notations M ≻ 0, M ≺ 0 denote that M is

positive definite, negative definite, respectively. Throughout the paper, the symbol ‖ ·‖ denotes

the Frobenius norm defined by ‖M‖ =
√

〈M, M〉, where 〈·, ·〉 is the inner product given by

〈M1, M2〉 = Tr (MT
1 M2), and Tr (·) is the trace operator.

2. Problem Formulation

The solution of the H∞ synthesis problem has received considerable attention in the control

literature; see, e.g., [1-3, 6-10, 12, 14, 15, 17-19, 22, 24, 31, 32] and the references therein.

Given a linear time-invariant (LTI) control system, the H∞ synthesis problem can be stated as

follows: Find an output feedback control matrix F that minimizes the H∞ norm of a certain

transfer function subject to the constraint that this control matrix F is stabilizing the associated

control system. A typical instance of an output feedback control system can be stated as follows.

Consider the LTI control system

ẋ(t) = Ax(t) + Bu(t) + B1w(t),

y(t) = Cx(t), (2.1)

z(t) = C1x(t) + D1u(t),

where x ∈ IRnx , w ∈ IRnw , u ∈ IRnu , z ∈ IRnz , and y ∈ IRny denote the state, the distur-

bance input, the control input, the regulated output, and the measured output, respectively.

Furthermore, A, B1, B, C1, C, and D1 are given constant matrices of appropriate dimensions.

We consider the static output feedback (SOF) control law:

u(t) = Fy(t), (2.2)

where F ∈ IRnu×ny denotes the unknown static output feedback gain, which we attempt to

compute by a suitable numerical procedure.

Given an output feedback matrix F and a control system (2.1), the closed-loop counterpart

is given by:

ẋ(t) = A(F )x(t) + B(F )w(t),

z(t) = C(F )x(t),
(2.3)

where

A(F ) := A + BFC, B(F ) := B1, C(F ) := C1 + D1FC

are the augmented closed loop operators, respectively.

The following assumption is needed throughout the paper.


