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Abstract

In this paper we consider the numerical solution of the one-dimensional heat equation on

unbounded domains. First an exact semi-discrete artificial boundary condition is derived

by discretizing the time variable with the Crank-Nicolson method. The semi-discretized

heat equation equipped with this boundary condition is then proved to be unconditionally

stable, and its solution is shown to have second-order accuracy. In order to reduce the

computational cost, we develop a new fast evaluation method for the convolution operation

involved in the exact semi-discrete artificial boundary condition. A great advantage of this

method is that the unconditional stability held by the semi-discretized heat equation is

preserved. An error estimate is also given to show the dependence of numerical errors on

the time step and the approximation accuracy of the convolution kernel. Finally, a simple

numerical example is presented to validate the theoretical results.
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1. Introduction

There are a large number of problems modeled by partial differential equations defined on

unbounded domains. When numerically solving this kind of problems, a common practice is to

limit the computation to a finite domain by introducing artificial boundaries. To make complete

the “truncated” problem on the finite domain, artificial boundary conditions (ABCs) should be

designed and applied. They are called exact if the solution of the truncated problem is exactly

the same as that of the original problem on the unbounded domain. ABCs were first derived

by Engquist and Majda [8] for hyperbolic systems. Since then, their idea has been extended

and refined for numerous applications. Givoli [10] and Tsynkov [20] made thorough reviews on

this topic.

This paper is concerned with the numerical issues related to the heat equation on one-

dimensional unbounded domains. Much attention has been paid on the numerical solution to

the Schrödinger equation, both linear [1, 2, 4, 6, 13, 15, 21] and nonlinear [3, 23]. Comparatively,

the attention paid on the heat equation is much less [12, 14, 19, 22]. Actually, these two

equations share many similarities. One lies in the fact that for one-dimensional problems on

unbounded domains, both their exact ABCs (in a form of Dirichlet-to-Neumann mapping)

involve the nonlocal half-order derivative operator. To well understand these two equations

with exact ABCs, a key point is to explore the properties of this operator. Correspondingly, to
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well resolve their solutions numerically, a key point is to approximate the half-order derivative

operator by an efficient and stable method.

So far, there are two different numerical methods for evaluating this half-order derivative

operator. The first one was proposed by Baskakov and Popov [6]. They approximated the

integrands with piecewise linear interpolating functions at the discrete time points. This idea

presents a 1.5th-order approximation to the half-order derivative operator, but its general-

ization has to be very careful. Mayfield [18] showed that even cooperated with the classical

unconditionally stable Crank-Nicolson scheme for the interior discretization of the Schrödinger

equation, this idea adapted for the exact ABCs in the Neumann-to-Dirichlet form can only

guarantee the stability on some disjoined intervals of ∆t/∆x2 (∆t is the time step, and ∆x

the spatial step). Comparatively, when cooperated with a delicately designed finite difference

scheme for the heat equation, Wu and Sun [22] proved the unconditional stability. Another idea

to approximate the half-order derivative operator was proposed by Yevick et. al [21], Antoine

and Besse [2]. The starting point is the semi-discretization of time variable with the Crank-

Nicolson method for the Schrödinger equation on the whole space. By using the Z-transform,

an exact semi-discrete ABC is then derived. There are two highlights about this method. First,

it presents an approximation of second-order accuracy for the half-order derivative operator,

which is more accurate than the direct integration method. Second, the reduced problem with

this semi-discrete ABC is unconditionally stable. Moreover, if a conforming Galerkin method

is employed for the spatial discretization, this stability is automatically maintained.

No matter which method is employed, the approximate discrete half-order derivative op-

erator involves convolution operations. If the number of time steps is large, these operations

become very costly, which justifies the use of fast evaluation methods. Two candidates have

been appeared in the literature. The first one was proposed by Jiang and Greengard [15]. They

divided the convolution into a local part and a history part. The local part is approximated with

the Baskakov-Popov method, while the history part is approximated by a sum of convolutions

with decaying exponential kernels, thus fast evaluation is straightforward. The second method

was given by Arnold et. al [5]. Based on their discrete transparent boundary conditions, they

approximated convolution coefficients with a sum of exponentials directly. These exponentials

were determined by equating a number of elements with their corresponding convolution co-

efficients. Both of these two methods work well for some problems, as their numerical tests

demonstrated, but up to now, neither of them can ensure stability in a rigorous mathematical

way.

In this paper, following the idea of [2, 21], we will derive the exact semi-discrete ABC for

the one-dimensional heat equation. Stability of the reduced problem will be proved, and we

will show that this semi-discrete approximation is of second-order accuracy, which is superior

to the scheme proposed by Wu and Sun [22]. A new fast evaluation method will be proposed

for the half-order derivative operator. We will rigorously prove its stability and present an error

estimate which shows the dependence of numerical error on the time step and the approximating

accuracy of the convolution kernel.

2. Preliminary

The Z-transform of a complex sequence f = {f0, f1, · · · } is defined as the power series

Z{f}(z) =

+∞
∑

n=0

fnz−n. (2.1)


