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Abstract

We discuss semiconvergence of the extrapolated iterative methods for solving singular

linear systems. We obtain the upper bounds and the optimum convergence factor of the ex-

trapolation method as well as its associated optimum extrapolation parameter. Numerical

examples are given to illustrate the theoretical results.
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1. Introduction

Consider a system of linear equations

Ax = b, (1.1)

where A ∈ Cn×n is singular, b, x ∈ Cn with b known and x unknown. We assume that the linear

system (1.1) is solvable, i.e., it has at least one solution. In order to solve the linear system

(1.1) with iterative methods, the coefficient matrix A is split into

A = M −N, (1.2)

where M is nonsingular. Then a linear stationary iterative method for solving (1.1) can be

described as follows.

xk+1 = Txk +M−1b, k = 0, 1, 2, · · · , (1.3)

where T = M−1N is the iteration matrix.

The iterative method (1.3) is called semiconvergent if for every x0 the sequence defined

by (1.3) converges to a solution of (1.1). It is well known that the iterative method (1.3) is

semiconvergent if and only if the pseudo-spectral radius

ϑ(T ) ≡ max{|µ|, µ ∈ σ(T )\{1}}

is less than 1 and the elementary divisors associated with µ = 1 ∈ σ(T ) are linear, i.e.,

index(I − T ) = 1,

where σ(T ) denotes the spectrum of T and index(B) denotes the index of the matrix B, i.e., the

smallest nonnegative integer k such that rank(Bk+1) = rank(Bk) (rank(B) means the rank of
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B). In this case, the splitting (1.2) is also called semiconvergent and T is called a semiconvergent

matrix. The associated convergence factor of T and the iterative method (1.3) is ϑ(T ).

The semiconvergence of splitting (1.2) has been investigated by many papers (cf. [4, 11] and

the references therein).

Moreover, some new results have been obtained by using matrix splittings and iterative

methods to solve the linear complementarity problem (cf. [1, 2, 3, 17]).

For ω ∈ C the extrapolation method of (1.3) can be defined by

xk+1 = Tωx
k + ωM−1b, k = 0, 1, 2, · · · , (1.4)

where

Tω = (1 − ω)I + ωT

is the iteration matrix and ω is called the extrapolation parameter (cf. [8]). Clearly, if ω = 0

then T0 = I, which leads to a trivial case. Thus, we assume that ω 6= 0.

Now, we assume that

A = D −Q, (1.5)

where D = diag(a11, · · · , ann) is nonsingular. Associated with the splitting (1.5), the Jacobi

iteration matrix J can be expressed as

J = D−1Q.

The extrapolated Jacobi method is also called JOR method (cf. [16]) with the iteration matrix

Jω, namely,

Jω = (1 − ω)I + ωJ.

The method (1.4) is consistent with (1.1) and is used to accelerate the convergence of the

method (1.3). The extrapolation method for solving the singular systems has been discussed

in many papers (cf. [7, 10, 12]).

Now, an interesting, important and also complicated problem is the determination of the

optimum value ωopt for ω, which minimizes ϑ(Tω). This problem has been discussed extensively

by some researchers. It was treated by the geometrical method in [7].

In this paper, the determination of the sharp analytical upper bounds for minω ϑ(Tω) is

achieved by an algebraic approach, which generalize the results in [15] to the singular case. On

the other hand, these bounds are obtained for the good analytical values for the extrapolation

parameter which coincide with the optimum ones under some additional conditions. In the

theory presented no knowledge of the eigenvalues of T is required. Finally, some applications and

numerical examples are given which support the theory developed. The paper is organized as

follows. After establishing the bounds for minω ϑ(Tω) in Section 2, we extend the extrapolation

theorem given in [6, 15] to the singular system and improve the corresponding results in [10, 12].

In Section 3, an application and the numerical results are given to illustrate the results presented

in Sections 2.

2. Determination of Upper Bounds and Optimum Values

Lemma 2.1. ([10]) For the singular linear system (1.1) the following results hold:


