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Abstract

In this paper we show the well-posedness and stability of the Maxwell scattering prob-

lem with the transparent boundary condition. The proof depends on the well-posedness of

the time-harmonic Maxwell scattering problem with complex wave numbers which is also

established.
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1. Introduction

We consider the electromagnetic scattering problem with the perfect conducting boundary

condition on the obstacle

ε
∂E

∂t
−∇× H = J in [R3\D̄] × (0, T ), (1.1)

µ
∂H

∂t
+ ∇× E = 0 in [R3\D̄] × (0, T ), (1.2)

n× E = 0 on ΓD × (0, T ), (1.3)

E|t=0 = E0, H|t=0 = H0. (1.4)

Here D ⊂ R3 is a bounded domain with Lipschitz boundary ΓD, E is the electric field, H is the

magnetic field, x̂ = x/|x|, and n is the unit outer normal to ΓD. The applied current J and the

initial conditions E0,H0 are assumed to be supported in the circle BR = {x ∈ R2 : |x| < R}
for some R > 0. The electric permittivity ε and magnetic permeability µ are assumed to be

positive constants. We remark that the results in this paper can be easily extended to solve

scattering problems with other boundary conditions such as the impedance boundary condition

on ΓD.

One of the fundamental problems in the efficient simulation of the wave propagation is the

reduction of the exterior problem which is defined in the unbounded domain to the problem

in the bounded domain. The transparent boundary condition plays an important role in the

construction of various approximate absorbing boundary conditions for the simulation of wave
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propagation, see the review papers Givoli [5], Tsynkov [11], Hagstrom [7] and the references

therein. The purpose of this paper is to study the transparent boundary condition for Maxwell

scattering problems.

For any s ∈ C such that Re (s) > 0, we let E
L

= L (E) and H
L

= L (H) be respectively

the Laplace transform of E and H in time

E
L
(x, s) =

∫ ∞

0

e−stE(x, t)dt, H
L
(x, s) =

∫ ∞

0

e−stH(x, t)dt.

Since L (∂tE) = sE
L
−E0 and L (∂tH) = sH

L
−H0, by taking the Laplace transform of (1.1)

and (1.2) we get

ε(sE
L
− E0) −∇× H

L
= J

L
in R

3\D̄, (1.5)

µ(sH
L
− H0) + ∇× E

L
= 0 in R

3\D̄, (1.6)

where J
L

= L (J). Because J, E0, H0 are supported inside BR = {x ∈ R2 : |x| < R}, we know

that E
L

satisfies the time-harmonic Maxwell equation outside BR

∇×∇× E− k2E
L

= 0 in R
3\D̄,

where the wave number k = i
√

εµs so that Im (k) =
√

εµs1 > 0. Let Ge : H−1/2(Div; ΓR) →
H−1/2(Div; ΓR) be the Dirichlet to Neumann operator

Ge(x̂ × E
L
) =

1

ik
x̂ × (∇× E

L
) = − 1√

εµ

1

s
x̂ × (∇× E

L
).

By using (1.6) we have

Ge(x̂ × E
L
) =

√

µ

ε
x̂ × H

L
on ΓR. (1.7)

For x̂ × E
L
|ΓR =

∑∞
n=1

∑n
m=−n amnUm

n (x̂) + bmnVm
n (x̂), we know that (cf., e.g., in Monk [9]

and also the discussion in Section 2)

Ge(x̂ × E
L
) =

∞
∑

n=1

n
∑

m=−n

−ikRbmnh
(1)
n (kR)

z
(1)
n (kR)

Um
n +

amnz
(1)
n (kR)

ikRh
(1)
n (kR)

Vm
n ,

where Um
n ,Vm

n are the vector spherical harmonics, h
(1)
n (z) is the spherical Hankel function of

the first order of order n, and z
(1)
n (z) = h

(1)
n (z) + zh

(1)′

n (z).

By taking the inverse Laplace transform of (1.7) we obtain the following transparent bound-

ary condition for the electromagnetic scattering problems
√

µ

ε
x̂ × H = (L −1 ◦ Ge ◦ L )(x̂ × E|ΓR) on ΓR, (1.8)

where

(L −1 ◦ Ge ◦ L )(x̂ × E|ΓR)

=

∞
∑

n=1

n
∑

m=−n

[

L
−1

(√
εµsRh

(1)
n (i

√
εµsR)

z
(1)
n (i

√
εµsR)

)

∗ bmn(R, t)

]

Um
n

−
[

L
−1

(

z
(1)
n (i

√
εµsR)

√
εµsRh

(1)
n (i

√
εµsR)

)

∗ amn(R, t)

]

Vm
n , (1.9)


