Journal of Computational Mathematics, Vol.26, No.6, 2008, 767-796.

A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT
APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION
AND THE HELE-SHAW FLOW"

Xjaobing Feng
Department of Mathematics, The University of Tennessee, Knozville, TN 37996, USA
Email: zfeng@math.utk.edu
Haijun Wu
Department of Mathematics, Nanjing University, Nanging 210093, China
Email: hjw@nju.edu.cn

Abstract

This paper develops a posteriori error estimates of residual type for conforming and
mixed finite element approximations of the fourth order Cahn-Hilliard equation wu; +
A(EAu - E_If(u)) = 0. It is shown that the a posteriori error bounds depends on e ' only
in some low polynomial order, instead of exponential order. Using these a posteriori error
estimates, we construct an adaptive algorithm for computing the solution of the Cahn-
Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments
are presented to show the robustness and effectiveness of the new error estimators and the
proposed adaptive algorithm.
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1. Introduction

In this paper we derive a posteriori error estimates and develop an adaptive algorithm based
on the error estimates for conforming and mixed finite element approximations of the following
Cahn-Hilliard equation and its sharp interface limit known as the Hele-Shaw flow [2,35]

ut+A(5Au7§f(u)) =0 inQpr:=Qx(0,7), (1.1)

ou 0 1 . o
B = %(EAU - gf(u)) =0 in 9Qr :=9Q x (0,7), (1.2)
u=uwg in  x {0}, (1.3)

where Q@ ¢ RV (N = 2,3) is a bounded domain with C? boundary 9 or a convex polygonal
domain, T > 0 is a fixed constant, and f is the derivative of a smooth double equal well
potential taking its global minimum value 0 at v = 41. In this paper we will consider the
following well-known quartic potential:

f(u):=F'(u) and F(u)= i(zﬁ —1)%

For the notation brevity, we shall suppress the super-index € on u® throughout this paper except
in Section 5.
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The Eq.(1.1) was originally introduced by Cahn and Hilliard [11] to describe the complicated
phase separation and coarsening phenomena in a melted alloy that is quenched to a temperature
at which only two different concentration phases can exist stably. The Cahn-Hilliard equation
has been widely accepted as a good (conservative) model to describe the phase separation and
coarsening phenomena in a melted alloy. The function u represents the concentration of one of
the two metallic components of the alloy. The parameter ¢ is an “interaction length”, which
is small compared to the characteristic dimensions on the laboratory scale. The Cahn-Hilliard
equation (1.1) is a special case of a more complicated phase field model for solidification of a
pure material [10,27,31]. For the physical background, derivation, and discussion of the Cahn-
Hilliard equation and related equations, we refer to [2,4,7,11,13,20,33,34] and the references
therein. It should be noted that the Cahn-Hilliard equation (1.1) can also be regarded as the
H~-gradient flow for the energy functional [26]

T (w) ::/Q[%|Vu|2+€—12F(u) dx. (1.4)

In addition to its application in phase transition, the Cahn-Hilliard equation (1.1) has
also been extensively studied in the past due to its connection to the following free boundary
problem, known as the Hele-Shaw problem and the Mullins-Sekerka problem

Aw =0 in Q\ Ty, ¢ €[0,7], (1.5)
g—: =0 on 99, t € [0,T], (1.6)
W= oK on Ty, t€0,T], (1.7)
11w
V=3 [%Lt on Ty, t€0,7], (1.8)
FO = FOO when t = 0. (19)

Here

k and V are, respectively, the mean curvature and the normal velocity of the interface I'y, n is
the unit outward normal to either 02 or Ty,

ow owt  Ow~

Bl = o0 = on
and wt and w™ are respectively the restriction of w in Q) and Q;, the exterior and interior
of I'y in Q.
Under certain assumption on the initial datum ug, it was first formally proved by Pego [35]
that, as € \, 0, the function
w® = —eAuf + e L f (uf),

known as the chemical potential, tends to w, which, together with a free boundary I' :=
Uo<i<r(Ts x {t}) solves (1.5)-(1.9). Also u® — +1 in QF for all t € [0,7], as € \, 0. The
rigorous justification of this limit was carried out by Alikakos, Bates and Chen in [2] under
the assumption that the above Hele-Shaw (Mullins-Sekerka) problem has a classical solution.
Later, Chen [13] formulated a weak solution to the Hele-Shaw (Mullins-Sekerka) problem and
showed, using an energy method, that the solution of (1.1)-(1.3) approaches, as € \, 0, a weak
solution of the Hele-Shaw (Mullins-Sekerka) problem. One of the consequences of the connection



