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Abstract

We propose a novel numerical approach for delay differential equations with vanishing

proportional delays based on spectral methods. A Legendre-collocation method is em-

ployed to obtain highly accurate numerical approximations to the exact solution. It is

proved theoretically and demonstrated numerically that the proposed method converges

exponentially provided that the data in the given pantograph delay differential equation

are smooth.
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1. Introduction

In this paper we consider the delay differential equation:

u′(x) = a(x)u(qx), 0 < x ≤ T, (1.1)

u(0) = y0, (1.2)

where 0 < q < 1 is a given constant and a is a smooth function on [0, T ]. Eq. (1.1) belongs

to the class of so-called pantograph delay differential equations; see [7, 10] for details on their

theory and physical applications.

The existing numerical methods for solving (1.1)-(1.2) include Runge-Kutta type methods

(see, e.g., the monograph [3]) and collocation methods (cf. [1,2,4,5]). The main difficulty in the

application of Runge-Kutta methods to (1.1) is the lack of information at the grid points for

the function on the right-hand-side of (1.1); these numerical data have to be generated by some

local interpolation process. While collocation methods yield globally defined approximations,

the collocation solutions are not globally smooth. Moreover, it has been shown in [5] that for
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arbitrarily smooth solutions of (1.1) the optimal order at the grid points of collocation methods

using piecewise polynomials of degree m cannot exceed p = m + 2 when m ≥ 2 (in contrast to

their application to ordinary differential equations where collocation at the Gauss points leads

to O(h2m)-convergence).

If the function a is in Cd[0, T ], then the corresponding solution of the initial-value problem

(1.1)-(1.2) lies in Cd+1[0, T ]. In this case, it is more natural to employ spectral-type methods

since they produce approximate solutions that are defined globally on [0, T ] and are globally

smooth. Moreover, the resulting errors inherit the typical property of spectral method in that

they decay exponentially.

For ease of notation we will describe and analyze the spectral method on the standard

interval I := [−1, 1]. Hence, we employ the transformation

x =
T

2
(1 + t), t =

2x

T
− 1. (1.3)

Then problem the (1.1)-(1.2) becomes

y′(t) = b(t)y(qt + q1), −1 < t ≤ 1, (1.4)

y(−1) = y0, (1.5)

where

y(t) := u

(

T

2
(1 + t)

)

, b(t) :=
T

2
a

(

T

2
(1 + t)

)

, q1 := q − 1. (1.6)

2. The Spectral Method

Let {tk}N
k=0 be the set of the (N + 1)-point Legendre Gauss, Legendre Gauss-Radau, or

Legendre Gauss-Lobatto points in [−1, 1], and denote by PN the space of polynomials with

degrees not exceeding N . Integration of (1.4) from [−1, tj] gives

y(tj) = y0 +

∫ tj

−1

b(s)y(qs + q1)ds, j ≥ 1, (2.1)

and the linear transformation

s =
tj + 1

2
v +

tj − 1

2

yields

y(tj) = y0 +

∫ 1

−1

b̃(v; tj) y

(

tj + 1

2
qv + q1j

)

dv, (2.2)

where

b̃(v; tj) :=
1 + tj

2
b

(

tj + 1

2
v +

tj − 1

2

)

, q1j :=
tj + 1

2
q − 1.

If we apply the (N + 1)-point Legendre Gauss, Legendre Gauss-Radau, or Legendre Gauss-

Lobatto quadrature formula to (2.2) we obtain

y(tj) ≈ y0 +
N

∑

k=0

ωk b̃(vk; tj)y

(

tj + 1

2
qvk + q1j

)

, (2.3)


