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Abstract

This paper presents an efficient moving mesh method to solve a nonlinear singular
problem with an optimal control constrained condition. The physical problem is governed
by a new model of turbulent flow in circular tubes proposed by Luo et al. using Prandtl’s
mixing-length theory. Our algorithm is formed by an outer iterative algorithm for handling
the optimal control condition and an inner adaptive mesh redistribution algorithm for
solving the singular governing equations. We discretize the nonlinear problem by using a
upwinding approach, and the resulting nonlinear equations are solved by using the Newton-
Raphson method. The mesh is generated and the grid points are moved by using the
arc-length equidistribution principle. The numerical results demonstrate that proposed
algorithm is effective in capturing the boundary layers associated with the turbulent model.

Mathematics subject classification: 65L10, 65L12.
Key words: Eddy viscosity, Turbulent pipe flow, Boundary layer, Optimal control, Moving
mesh.

1. Introduction

The modeling of turbulent flows still plays an important role in computational fluid dynamics
because direct simulation of flows are restricted to very simple geometries and low Reynolds
number [6,9,18,19]. Development of turbulence model is therefore still an important task and
even some semi-empirical means such as the eddy viscosity or Prandtl’s mixing length are very
helpful to deal with many problems in engineering practice due to their simplicity. Luo et
al. [15] established a new model of turbulent flow in circular tubes which is an application and
improvement of Prandtl’s mixing-length theory. The model expresses the single phase flow in
circular tubes, which is an optimal parameter control problem governed by a nonlinear singular
equation. The model yields many complex mathematical characters such as strong boundary
layer. The computational results resulting from the new model are found in good agreement
with the experimental results on fluid velocity distribution, eddy viscosity distribution and
friction factor. On the mathematical side, the governing equations associate with this model
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are quite complicated, and an effective numerical scheme for finding numerical approximations
seems useful.

The difficulties of this problem include the existence of the boundary layers and an optional
control condition enforced on the governing equations. To resolve the layers, numerical simu-
lations require extremely fine meshes on the small localized portions of the physical domain. It
will become very expensive if a uniform fine mesh is employed. Recent study has demonstrated
that moving mesh methods are powerful in resolving large solution variations by increasing the
solution accuracy and decreasing the cost of computations, see, e.g., Adaptive moving mesh
methods have important applications in solving partial differential equations (PDEs). Up to
now, there have been important progresses [1,3,20]. Harten and Hyman [11] began the earliest
study of the adaptive methods to improve resolution of discontinuous solutions of hyperbolic
equations. After their work, many other moving mesh methods on this direction have been pro-
posed based on combining the variational grid methods with high resolution shock capturing
methods, including the so-called moving mesh PDE (MMPDE) approach of moving mesh meth-
ods of W. Huang [10], moving finite element methods of Miller [17], and moving finite volume
methods [22]. Recently, there have been works on moving mesh methods based on Harmonic
maps [8,16,22]. Theoretical results on adaptive mesh arising from equidistribution of a monitor
function can be found in [3,4,12-14,21]. In particular, Kopteva [13] derived certain maximum
norm a posterior error estimates for one-dimensional singularly perturbed convection-diffusion
problems, see also a recent paper [14] for a similar posterior error estimate.

The aim of this paper is to present an efficient and fast numerical method for the tur-
bulent model. The proposed numerical algorithm includes two parts: (i) the outer iterative
algorithm is used to solve the optimal control condition and (ii) the inner adaptive mesh redis-
tribution algorithm is used to solve the singular problem. We discretize this nonlinear problem
by using upwinding scheme. The discretized nonlinear equations is solved by Newton-Raphson
method. The arc-length equidistribution principle is used in the part (ii) above. The numerical
examples will be provided to demonstrate the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, we briefly review the model of turbulent flow
in circular tubes by employing Prandtl’s mixing-length theory. In Section 3, we will present
the discrete schemes and algorithms. Numerical experiments will be carried out in Section 4.
Some concluding remarks will be presented in the final section.

2. A New Model of Turbulent Flow in Circular Tubes

In this section, we briefly review the background of the model of turbulent flow in circular
tubes which was proposed by Luo et al. [15]. Moreover, using dimensionless analysis we will
derive a complete mathematical description for this model.

Note that the shearing stress of Newtonian fluid for turbulent flow can be described by eddy
viscosity with dimensionless analysis [9]. We then have following expression:

di __—Ro
dp 14 w/pur’

where 4 is dimensionless time-smoothed velocity, u; is eddy viscosity, p, is kinematic viscosity,
R is dimensionless radius of a circular pipe and R = puR/p with R is the tube radius, p is
the liquid density, 4 is friction velocity, p is the molecule viscosity, ¢ is dimensionless radial
position in a circular pipe, ¢ = 0 is the center of the tube and ¢ = 1 corresponds to the wall of

(2.1)



