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Abstract

From a limit model in electric field obtained by letting the frequency vanish in the time-

harmonic Maxwell equations, we consider a limit perturbation model in the tangential

boundary trace of the curl of the electric field for localizing numerically certain small

electromagnetic inhomogeneities, in a three-dimensional bounded domain. We introduce

here two localization procedures resulting from the combination of this limit perturbation

model with each of the following inversion processes: the Current Projection method and

an Inverse Fourier method. Each localization procedure uses, as data, a finite number of

boundary measurements, and is employed in the single inhomogeneity case; only the one

based on an Inverse Fourier method is required in the multiple inhomogeneities case. Our

localization approach is numerically suitable for the context of inhomogeneities that are

not purely electric. We compare the numerical results obtained from the two localization

procedures in the single inhomogeneity configuration, and describe, in various settings

of multiple inhomogeneities, the results provided by the procedure based on an Inverse

Fourier method.
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1. Introduction

When we seek to localize an inhomogeneity of small volume contained in a three-dimensional
bounded domain from a finite number of boundary measurements, we are usually concerned
with an underlying inverse problem which is not in general well-posed. In the situation where
the inverse problem is based on linear equations, the combination of an asymptotic expansion
of the perturbation in the physical field in presence in the domain, with a suited inversion
algorithm, can allow one to overcome the ill-posed character of this inverse problem. This is
the approach proposed by Cedio-Fengya, Moskow & Vogelius [10] for localizing a finite number
of conductivity inhomogeneities, of small volume, contained in a bounded domain. Typically,
the inversion algorithm makes use of an asymptotic expansion for perturbations in the voltage
potential, and is based on a minimization process of least-squares type for the calculation of
the geometrical parameters of the inhomogeneities. The resulting localization procedure is
therefore iterative, in contrast to the procedure developed by Ammari, Moskow & Vogelius [4]
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for such inhomogeneities. In fact, although using the same asymptotic expansion for measuring
boundary voltage perturbations initiated by boundary electric currents, the inversion algorithm
in [4] is based on one of the following two direct inversion processes: the Current Projection
method and an Inverse Fourier method. In the first case, the algorithm consists of identifying
the ’center’ of a single inhomogeneity as the unknown of a linear system whereas in the second
case, in the presence of multiple inhomogeneities, it consists of calculating a discrete inverse
Fourier transform of a sample of measurements. Such direct processes appear numerically
efficient (see e.g. [4, 22]) for solving inverse problems where we are mainly interested in the
position of the single inhomogeneity, or in the positions of a finite number of inhomogeneities,
in the domain. We will be concerned with such processes in this paper. For other numerical
methods that could be used in the localization problem of conductivity inhomogeneities, or of
dielectric inhomogeneities, in different settings, we refer to [2, 8, 12, 15, 16, 20, 21].

Recently, a framework for the localization of three-dimensional electromagnetic inhomo-
geneities was introduced by Ammari, Vogelius & Volkov [5]. This framework considers the
time-harmonic Maxwell equations in a three-dimensional bounded domain Ω containing a finite
number m of unknown inhomogeneities of small volume, and proposes to localize these inhomo-
geneities from an asymptotic expansion devoted to the study of perturbations in the tangential
boundary trace of the curl of the electric field. A particular reformulation of this asymptotic
expansion leads to an asymptotic formula that allows one to evaluate boundary measurements
of “voltage” type from prescribed boundary currents. In the presence of well-separated in-
homogeneities, and also distant from ∂Ω, the boundary of Ω, this asymptotic formula states
that:
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where w denotes any smooth vector-valued function such that

curl(curl w)− k2w = 0 in W,

with W an open neighborhood of Ω, k2 = ω2ε0µ0, and ω a given frequency. In (1.1), α is
the common order of magnitude of the diameters of the inhomogeneities, and the points zj ,
1 ≤ j ≤ m, represent the ’centers’ of the inhomogeneities. The electric field is denoted by Eα

in the presence of the inhomogeneities and by E0 in the absence of all the inhomogeneities.
The outward unit normal to Ω, defined on ∂Ω, is represented by ν. The (constant) background
magnetic permeability and complex permittivity are µ0 and ε0 respectively. Also, µj and εj

are the (constant) magnetic permeability and the complex permittivity of the jth inhomogene-
ity. Finally, M j(µ0/µj) and M j(ε0/εj) are the polarization tensors associated with the jth
inhomogeneity (symmetric 3× 3 matrices).

More recently, Asch & Mefire [7] have achieved in various contexts the numerical localization
of such electromagnetic inhomogeneities from three numerical procedures based on (1.1). Typ-
ically, each of these procedures results from the combination of (1.1) with one of the following
inversion processes: the Current Projection method, an Inverse Fourier method, and a MUSIC


