
Journal of Computational Mathematics

Vol.27, No.5, 2009, 573–603.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2009.27.5.012

Local Multigrid in H(curl)*

Ralf Hiptmair
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Abstract

We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra

and their finite element Galerkin discretization by means of lowest order edge elements.

We assume that the underlying tetrahedral mesh has been created by successive local mesh

refinement, either by local uniform refinement with hanging nodes or bisection refinement.

In this setting we develop a convergence theory for the the so-called local multigrid correc-

tion scheme with hybrid smoothing. We establish that its convergence rate is uniform with

respect to the number of refinement steps. The proof relies on corresponding results for lo-

cal multigrid in a H1(Ω)-context along with local discrete Helmholtz-type decompositions

of the edge element space.
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1. Introduction

On a polyhedron Ω⊂ R
3, scaled such that diam(Ω) = 1, we consider the variational problem:

seek u ∈ HΓD
(curl,Ω) such that

(curl u, curl v)L2(Ω) + (u,v)L2(Ω)︸ ︷︷ ︸
=:a(u,v)

= (f ,v)L2(Ω) ∀v ∈ HΓD
(curl,Ω) . (1.1)

For the Hilbert space of square integrable vector fields with square integrable curl and vanishing

tangential components on ΓD we use the symbol HΓD
(curl,Ω), see [22, Ch. 1] for details. The

source term f in (1.1) is a vector field in (L2(Ω))3. The left hand side of (1.1) agrees with the

inner product of HΓD
(curl,Ω) and will be abbreviated by a(u,v) (“energy inner product”).

Further, ΓD denotes the part of the boundary ∂Ω on which homogeneous Dirichlet boundary

conditions in the form of vanishing tangential traces of u are imposed. The geometry of the

Dirichlet boundary part ΓD is supposed to be simple in the following sense: for each connected

component Γi of ΓD we can find an open Lipschitz domain Ωi ⊂ R
3 such that

Ωi ∩ Ω = Γi , Ωi ∩ Ω = ∅ , (1.2)
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Table 1.1: Important notation used in this paper

H(curl,Ω) : Sobolev space of square integrable vector fields on Ω ⊂ R
3 with square

integrable curl

HΓD
(curl,Ω) : vector fields in H(curl,Ω) with vanishing tangential components on

ΓD ⊂ ∂Ω

M, T : tetrahedral finite element meshes, may contain hanging nodes

N (M) : set of vertices (nodes) of a mesh M

E(M) : set of edges of a mesh M

ρK , ρM : shape regularity measures

h : – local meshwidth function for a finite element mesh

– (as subscript) tag for finite element functions
U(M) : lowest order edge element space on M

bE : nodal basis function of U(M) associated with edge E

V (M) : space of continuous piecewise linear functions on M

V2(M) : quadratic Lagrangian finite element space on M

Ṽ2(M) : quadratic surplus space, see (2.19)

bp : nodal basis function of V (M) (“tent function”) associated with vertex

p

BX(M) : set of nodal basis functions for finite element space X on mesh M

Πh : nodal edge interpolation operator onto U(M), see (2.7)

Ih : vertex based piecewise linar interpolation onto V (M)

Pp : space of 3-variate polynomials of total degree ≤ p

U(M), V (M): finite element spaces oblivious of zero boundary conditions

≺ : nesting of finite element meshes

ℓ(K) : level of element K in hierarchy of refined meshes

ωl : refinement zone, see (4.1)

Σl : refinement strip, see (5.35)

B
l
V , B

l
U : sets of basis functions supported inside refinement zones, see (4.9)

Qh : quasi-interpolation operator for linear Lagrangian finite elements

and Ωi and Ωj have positive distance for i 6= j. Further, the interior of Ω ∪ Ω1 ∪ Ω2 . . . is

expected to be a Lipschitz-domain, too (see Fig. 5.1). This is not a severe restriction, because

variational problems related to (1.1) usually arise in quasi-static electromagnetic modelling,

where simple geometries are common. Of course, ΓD = ∅ is admitted.

Lowest order HΓD
(curl,Ω)-conforming edge elements are widely used for the finite element

Galerkin discretization of variational problems like (1.1). Then, for a solution u ∈ (H1(Ω))3

with curl u ∈ (H1(Ω))3 we can expect the optimal asymptotic convergence rate

‖u − uh‖H(curl,Ω) ≤ CN
−1/3
h , (1.3)

on families of finite element meshes arising from global refinement. Here, uh is the finite element

solution, Nh the dimension of the finite element space, and C > 0 does not depend on Nh.

However, often u will fail to possess the required regularity due to singularities arising at

edges/corners of ∂Ω and material interfaces [20, 21]. Fortunately, it seems to be possible to

retain (1.3) by the use of adaptive local mesh refinement based on a posteriori error estimates,

see [10, 47] for theory in H1-setting, [7, 17] for numerical evidence in the case of edge element

discretization, and [8, 31, 45] for related theoretical investigations.


