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Abstract

We compare 13 different a posteriori error estimators for the Poisson problem with

lowest-order finite element discretization. Residual-based error estimators compete with a

wide range of averaging estimators and estimators based on local problems. Among our five

benchmark problems we also look on two examples with discontinuous isotropic diffusion

and their impact on the performance of the estimators. (Supported by DFG Research

Center MATHEON.)
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1. Introduction

A posteriori error control has become an important issue for reliable and efficient computa-

tion of PDEs [1–6]. This paper updates the empirical study of [7] to modern a posteriori error

control via the five classes of 13 estimators of Table 1.1 applied to the five benchmark examples

of Table 1.2 such as the Poisson model problem on the L-shaped domain illustrated in Figure

1.1. Up to modified boundary conditions, marked by BC, all the benchmark problems are of

the following type with or without discontinuous coefficients κ for some given right-hand side

f ∈ L2(Ω) and finite element approximation uh to the unknown exact solution u ∈ H1
0 (Ω) of

div(κ∇u) + f = 0 in Ω. (1.1)

Here and throughout the paper, Ω ⊂ R
n is a bounded Lipschitz domain with Lebesgue and

Sobolev spaces L2(Ω) and H1(Ω), and the piecewise constant diffusion coefficient κ is bounded

by

0 < κmin ≤ κ(x) ≤ κmax < ∞ for all x ∈ Ω. (1.2)

By definition, an error estimator η is a computable quantity that aims to estimate the error

e := u − uh, e.g., in its energy norm,

|||e||| := ‖κ
1/2∇(u − uh)‖L2(Ω).
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Fig. 1.1. Error and error estimators for uniform mesh refinement of L-shaped domain with right-hand

side 1 from Example 7.1 in Section 7 to illustrate different accuracy of different error estimators.

Desirable properties of η are its reliability in the sense of an upper bound

|||e||| ≤ Crelη + h.o.t.

and its efficiency in the sense of a lower bound

η ≤ Ceff|||e|||+ h.o.t.

Any complete error control requires estimates of the constants Crel and Ceff and the higher-order

terms h.o.t. which are oscillations of the right-hand side f that are of magnitudes smaller than

the energy error in all the examples of this paper. In many cases only the constant Crel = 1 is

known while Ceff depends on generic constants [1, 3, 5].

We assume that T is a regular triangulation of Ω in the sense of Ciarlet [8,9] with nodes N ,

free nodes K = N\∂Ω and edges E such that κ ∈ P0(T ). The discrete space Pk(T ) denotes the

T -piecewise polynomials of degree ≤ k. The nodal basis function associated to z ∈ N is denoted

Table 1.1: Classes of a posteriori error estimators studied in this paper.

No Class error estimators Examples (Reference below)

1 explicit residual-based ηR (Section 2)

2 averaging ηA1, ηA2, ηMP1, ηRT, ηMRT (Section 3)

3 equilibration ηB, ηMFEM, ηLW, ηEQL, ηEQB (Section 4)

4 least-square ηLS (Section 4.2)

5 localisation ηCF (Section 5)

Table 1.2: Benchmark examples studied in this paper.

No Short name Problem description in (1.1) Feature

1 L-shaped domain κ ≡ f ≡ 1 corner singularity

2 Square domain κ ≡ 1, f with oscillations oscillations

3 Slit domain κ ≡ f ≡ 1 & BC slit singularity

4 Interface problem jumping κ, f ≡ 0 & BC interface singularity

5 Octagon example jumping κ, f ≡ 0 & BC continuous fluxes


