Journal of Computational Mathematics Vol.28, No.3, 2010, 418–428.

http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m1006

SUPER-GEOMETRIC CONVERGENCE OF A SPECTRAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH JUMP COEFFICIENTS*

Lin Wang

College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China and College of Information Technical Science, Nankai University, Tianjin 300071, China Email: rinoya@mail.nankai.edu.cn Ziqing Xie College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China Email: ziqingxie@hunnu.edu.cn Zhimin Zhang Department of Mathematics, Wayne State University, Detroit, MI 48202, USA and College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China Email: ziqingxie@hunnu.edu.cn Zhimin Zhang Department of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China Email: zzhang@math.wayne.edu

Abstract

We propose and analyze a C^0 spectral element method for a model eigenvalue problem with discontinuous coefficients in the one dimensional setting. A super-geometric rate of convergence is proved for the piecewise constant coefficients case and verified by numerical tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation method and a spectral Galerkin method is established for a simplified model.

Mathematics subject classification: Primary 65N30, Secondary 65N50, 65N15, 65N12, 65D10, 74S05, 41A10, 41A25.

Key words: Eigenvalue, Spectral method, Collocation, Galerkin finite element method.

1. Introduction

We often encounter eigenvalue problems with discontinuous coefficients in practice. Examples of such applications may be found in [11]. In this paper, we consider the following one dimensional model problem: Find $(\lambda, u) \in \mathbb{R}^+ \times H^2(-\pi, \pi)$ such that

$$-u''(x) = \lambda c(x)u(x), \qquad u(-\pi) = u(\pi), \quad u'(-\pi) = u'(\pi).$$
(1.1)

Here $c(x) \ge c_0 > 0$ is a piecewise constant, or piecewise analytic function. The physics background of this model problem comes from the source-free Maxwell equations describing the transverse-magnetic mode in the one-dimensional periodic media, where the function u represents the electric field pattern, and the dielectric function c(x) describes a unit cell from a multilayer structure with 2π -periodicity. This model problem was discussed by Min and

^{*} Received March 18, 2009 / Revised version received May 5, 2009 / Accepted June 6, 2009 / Published online February 1, 2010 /

Gottlieb in [11] where C^1 conforming spectral collocation methods were constructed on two elements over

$$H^2_{per}(-\pi,\pi) = \big\{ v \in H^2(-\pi,\pi) : v(-\pi) = v(\pi), v'(-\pi) = v'(\pi) \big\},$$

and error bounds of type $\mathcal{O}(p^{-m})$ were established. Note that the solution of (1.1) belongs to C^1 .

It would be interesting to discuss C^0 spectral element methods over

$$H^1_{per}(-\pi,\pi) = \big\{ v \in H^1(-\pi,\pi) : v(-\pi) = v(\pi) \big\},\$$

since the construction of a C^0 spectral element method is much simpler than that of the global C^1 spectral collocation method proposed in [11]. The idea of the spectral element can be found, e.g., in an early work [12]. Note that the spectral element method is equivalent to the so-called *p*-version finite element method, see e.g., [3]. Under the finite element variational framework, we are able to prove a super-geometric error bound of type $\mathcal{O}(e^{-2p(\log p-\gamma)})$. In some earlier works of the third author, the super-geometric error bound of type $\mathcal{O}(e^{-p(\log p-\gamma)})$ has been established for some spectral/collocation approximations of the two-point boundary problem [17,18]. Our error bound for the eigenvalue approximation "doubles" the error bound for the associated eigenfunction approximation, the fact we have known for the *h*-version finite element method, it is a common practice to consider error bounds of type $\mathcal{O}(p^{-m})$, see, e.g., [5–7, 10, 15, 16], and reference therein. To the best of our knowledge, this is the first time that a super-geometric convergence rate is established for the eigenvalue approximation by the spectral method.

2. Theoretical Setting

The variational formulation of (1.1) is to find $(\lambda, u) \in \mathbb{R}^+ \times H^1_{per}(-\pi, \pi)$ such that

$$(u',v') = \lambda(cu,v), \quad \forall v \in H^1_{per}(-\pi,\pi).$$

$$(2.1)$$

In this paper, we also consider the Dirichlet problem

$$-u''(x) = \lambda c(x)u(x), \qquad u(0) = 0 = u(1).$$

Its variational formulation is to find $(\lambda, u) \in \mathbb{R}^+ \times H^1_0(0, 1)$ such that

$$(u', v') = \lambda(cu, v), \quad \forall v \in H_0^1(0, 1).$$
 (2.2)

By the general theory [2,8], both problems (2.1) and (2.2) have countable infinite sequence of eigen-pairs (λ_j, u_j) satisfying

$$0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots \to \infty, \qquad (u'_i, u'_j) = \lambda_j (cu_i, u_j) = \lambda_j \delta_{ij}.$$

Furthermore, eigenvalues can be characterized as extrema of the Rayleigh quotient R(u) = (u', u')/(cu, u) as follows

$$\lambda_1 = \inf_{u \in S} = R(u_1),$$
$$\lambda_k = \inf_{u \in S, \ (u', u'_j) = 0, j = 1, \dots, k-1} R(u) = R(u_k), \quad k = 2, 3, \dots, k-1$$