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Abstract

We propose and analyze a C0 spectral element method for a model eigenvalue problem

with discontinuous coefficients in the one dimensional setting. A super-geometric rate of

convergence is proved for the piecewise constant coefficients case and verified by numerical

tests. Furthermore, the asymptotical equivalence between a Gauss-Lobatto collocation

method and a spectral Galerkin method is established for a simplified model.
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1. Introduction

We often encounter eigenvalue problems with discontinuous coefficients in practice. Exam-

ples of such applications may be found in [11]. In this paper, we consider the following one

dimensional model problem: Find (λ, u) ∈ R
+ ×H2(−π, π) such that

−u′′(x) = λc(x)u(x), u(−π) = u(π), u′(−π) = u′(π). (1.1)

Here c(x) ≥ c0 > 0 is a piecewise constant, or piecewise analytic function. The physics back-

ground of this model problem comes from the source-free Maxwell equations describing the

transverse-magnetic mode in the one-dimensional periodic media, where the function u rep-

resents the electric field pattern, and the dielectric function c(x) describes a unit cell from

a multilayer structure with 2π-periodicity. This model problem was discussed by Min and
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Gottlieb in [11] where C1 conforming spectral collocation methods were constructed on two

elements over

H2
per(−π, π) =

{

v ∈ H2(−π, π) : v(−π) = v(π), v′(−π) = v′(π)
}

,

and error bounds of type O(p−m) were established. Note that the solution of (1.1) belongs to

C1.

It would be interesting to discuss C0 spectral element methods over

H1
per(−π, π) =

{

v ∈ H1(−π, π) : v(−π) = v(π)
}

,

since the construction of a C0 spectral element method is much simpler than that of the global

C1 spectral collocation method proposed in [11]. The idea of the spectral element can be

found, e.g., in an early work [12]. Note that the spectral element method is equivalent to the

so-called p-version finite element method, see e.g., [3]. Under the finite element variational

framework, we are able to prove a super-geometric error bound of type O(e−2p(log p−γ)). In

some earlier works of the third author, the super-geometric error bound of type O(e−p(log p−γ))

has been established for some spectral/collocation approximations of the two-point boundary

problem [17,18]. Our error bound for the eigenvalue approximation “doubles” the error bound

for the associated eigenfunction approximation, the fact we have known for the h-version finite

element method. It is worthy to point out that in the literature of the spectral method, it

is a common practice to consider error bounds of type O(p−m), see, e.g., [5–7, 10, 15, 16], and

reference therein. To the best of our knowledge, this is the first time that a super-geometric

convergence rate is established for the eigenvalue approximation by the spectral method.

2. Theoretical Setting

The variational formulation of (1.1) is to find (λ, u) ∈ R
+ ×H1

per(−π, π) such that

(u′, v′) = λ(cu, v), ∀v ∈ H1
per(−π, π). (2.1)

In this paper, we also consider the Dirichlet problem

−u′′(x) = λc(x)u(x), u(0) = 0 = u(1).

Its variational formulation is to find (λ, u) ∈ R
+ ×H1

0 (0, 1) such that

(u′, v′) = λ(cu, v), ∀v ∈ H1
0 (0, 1). (2.2)

By the general theory [2, 8], both problems (2.1) and (2.2) have countable infinite sequence of

eigen-pairs (λj , uj) satisfying

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞, (u′i, u
′
j) = λj(cui, uj) = λjδij .

Furthermore, eigenvalues can be characterized as extrema of the Rayleigh quotient R(u) =

(u′, u′)/(cu, u) as follows

λ1 = inf
u∈S

= R(u1),

λk = inf
u∈S, (u′,u′

j
)=0,j=1,...,k−1

R(u) = R(uk), k = 2, 3, . . . ,


