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Abstract

This paper is devoted to the mathematical analysis of a general recursive linearization

algorithm for solving inverse medium problems with multi-frequency measurements. Under

some reasonable assumptions, it is shown that the algorithm is convergent with error

estimates. The work is motivated by our effort to analyze recent significant numerical

results for solving inverse medium problems. Based on the uncertainty principle, the

recursive linearization allows the nonlinear inverse problems to be reduced to a set of

linear problems and be solved recursively in a proper order according to the measurements.

As an application, the convergence of the recursive linearization algorithm [Chen, Inverse

Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering

problem.
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1. Introduction

Motivated by significant scientific and industrial applications, the field of inverse problems
has undergone a tremendous growth in the last several decades. A variety of inverse problems,
including identification of PDE coefficients, reconstruction of initial data, estimation of source
functions, and detection of interfaces or boundary conditions, demand the solution of ill-posed
non-linear operator equations see, e.g., [12, 18]. Our focus of this paper is on the inverse
medium scattering problem, i.e., the reconstruction of the refractive index of an inhomogeneous
medium from measurements of the far field pattern of the scattered fields. The inverse medium
scattering problem arises naturally in diverse applications such as radar, sonar, geophysical
exploration, medical imaging, and nondestructive testing. There are two major difficulties
associated with the nonlinear inverse problem: the ill-posedness and the presence of many local
minima. A number of algorithms have been proposed for numerical solutions of this inverse
problem. Classical iterative optimization methods offer fast local convergence but often fail to
compute the global minimizers because of multiple local minima. Another main difficulty is
the ill-posedness, i.e., infinitesimal noise in the measured data may give rise to a large error in
the computed solution. It is well known that the ill-posedness of the inverse scattering problem
decreases as the frequency increases. However, at high frequencies, the nonlinear equation
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becomes extremely oscillatory and possesses many more local minima. A challenge for solving
the inverse problem is to develop solution methods that take advantages of the regularity of the
problem for high frequencies without being undermined by local minima.

To overcome the difficulties, stable and efficient regularized recursive linearization methods
are developed in [3, 9, 10] for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell’s equations [4] in the case of full aperture data. We refer the reader
to [3, 5, 6] for limited aperture data cases. Roughly speaking, these methods use the Born
approximation at the lowest frequency kmin to obtain the initial guesses which are the low-
frequency modes of the medium. Updates are made by using the data at higher frequency
sequentially until a sufficiently high frequency kmax where the dominant modes of the medium
are essentially recovered.

In the case of fixed frequencies, a related continuation approach has been developed on the
spatial frequencies [3]. A recursive linearization approach has also been developed in [11] for
solving inverse obstacle problems. More recently, direct imaging techniques have been explored
to replace the weak scattering for generating the initial guess [2]. Although the numerical re-
sults are efficient and robust, the analysis of the computational methods is completely open.
Our main goal of this paper is to originate the convergence analysis of the general recursive
linearization algorithm for solving the inverse medium problem. Under some reasonable as-
sumptions, we establish the convergence of the algorithm along with an error estimate. Our
analysis is inspired by the underlying physics, especially the uncertainty principle.

The outline of the paper is as follows. A formulation of the nonlinear inverse scattering
problem is presented in Section 2. Section 3 is devoted to useful properties of the linearized
problem. In Section 4, we discuss the significance of the uncertainty principle in the study of
inverse problems. Through a singular value decomposition analysis, the uncertainty principle
may further be used to characterize the ill-posedness of the inverse problem. A reconstruction
method based on the uncertainty principle, recursive linearization, is introduced. We establish
the convergence of the recursive linearization approach and derive an error estimate in Section 5.
As an example, we apply the convergence result to the algorithm presented in [9] for solving an
inverse medium scattering problem in Section 6. Finally, some relevant discussions are provided
in the Appendix about the uncertainty principal and its close connection to the inverse medium
scattering problem.

2. Inverse Medium Scattering Problem

The scattering of time-harmonic electromagnetic waves by a cylindrical shaped inhomoge-
neous medium with refractive index 1 + q(x) is governed by the following differential equation

∆φ(x) + k2(1 + q(x))φ(x) = 0,inR2, (2.1)

where the real part of the complex valued function φ describes the space-dependent part of
a velocity potential in the case of acoustic waves or an electric/magnetic field in the case of
electromagnetic waves. The real number k > 0 is the wave number. Assume that the refractive
index q(x) + 1 is a positive real function in R2, the scatterer q(x) is compactly supported in
D(R) and belongs to C2

0 (D). Here D(R) denotes a ball in R2 centered at 0 with radius R. The
direct or forward scattering problem in this context is for a given incident wave φ0(x) satisfying
the Helmholtz equation ∆φ0 +k2φ0 = 0 in R2, to determine the scattered wave ψ(x) : R2 → C


