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Abstract

Block matrices associated with discrete Trigonometric transforms (DTT’s) arise in the

mathematical modelling of several applications of wave propagation theory including dis-

cretizations of scatterers and radiators with the Method of Moments, the Boundary El-

ement Method, and the Method of Auxiliary Sources. The DTT’s are represented by

the Fourier, Hartley, Cosine, and Sine matrices, which are unitary and offer simultaneous

diagonalizations of specific matrix algebras. The main tool for the investigation of the

aforementioned wave applications is the efficient inversion of such types of block matri-

ces. To this direction, in this paper we develop an efficient algorithm for the inversion

of matrices with U -diagonalizable blocks (U a fixed unitary matrix) by utilizing the U -

diagonalization of each block and subsequently a similarity transformation procedure. We

determine the developed method’s computational complexity and point out its high effi-

ciency compared to standard inversion techniques. An implementation of the algorithm in

Matlab is given. Several numerical results are presented demonstrating the CPU-time effi-

ciency and accuracy for ill-conditioned matrices of the method. The investigated matrices

stem from real-world wave propagation applications.
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1. Introduction

Discrete Trigonometric transforms (DTT’s) play a significant role in wave scattering and
radiation theory, signal processing, physics, and numerical linear algebra. Representative ex-
amples constitute the discrete Fourier transforms (DFT’s), the discrete Hartley transforms
(DHT’s), the discrete Cosine transforms (DCT’s), and the discrete Sine transforms (DST’s).
Their primary contribution lies in the significant reduction of the complexity in the associated
mathematical problems. For example, applications of such appropriate transforms in differen-
tial and integral equations reduce them to algebraic equations, whose solutions are more easily
obtained, see, e.g., [1, 2]. Moreover, in harmonic analysis as well as in signal processing the
DFT decomposes a signal sequence into its frequency components [3]. It is important to note
that this wide applicability of the DTT’s is mainly justified by the existence of fast algorithms,
that allow the transforms computations within O(nlog2n) (instead of O(n2) when performing
directly the matrix-vector product of length n) [4–6].
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In particular, block matrices associated with DTT’s arise in concrete physical and tech-
nological applications including: (i) the solution of wave scattering and radiation problems
with the Method of Moments (MoM) [7, 8], (ii) the investigation and optimization of numeri-
cal methods for electromagnetic scattering problems, such as the Method of Auxiliary Sources
(MAS) [9]- [10], (iii) the numerical solution of integral equations with the Boundary Element
Method (BEM) [11], (iv) optical imaging [12], (v) image compression [13], (vi) efficient pre-
conditioning of Toeplitz systems [14]. Besides, we point out that these applications exhibit
the essential role of the inversion of such types of complex block matrices for the derivation of
formulas determining the error bounds of numerical methods as well as for the numerical or
semi-analytical computation of solutions [15].

The specific DTT’s mentioned above are represented by the Fourier, Hartley, Cosine, and
Sine matrices. These unitary matrices offer simultaneous diagonalizations of specific matrix
algebras, including circulants, skew-circulants, Toeplitz-plus-Hankel, tridiagonal [16]. These
matrix algebras are unified by considering the algebra Diag(U ) of all U -diagonalizable matrices,
for U a fixed unitary matrix.

For the mathematical modelling of the above mentioned wave applications we develop in
this paper an efficient method for the inversion of an m × m block matrix A = [Aij ] with
U -diagonalizable blocks of order n (i, j = 1, . . . ,m). First, we consider the diagonalizations
Aij = UΛijU

∗, where Λij is the diagonal matrix containing the eigenvalues of Aij , and hence
the inversion of A is reduced to that of the m×m block matrix Λ = [Λij ] with diagonal blocks of
order n. For the inversion of Λ we construct, by using concepts of Graph Theory, an appropriate
permutation matrix P so that the matrix PΛPT = diag(Λ′1,Λ

′
2, . . . ,Λ

′
n) is block-diagonal with

Λ′k invertible m×m full matrices. The inverse Λ−1 = [Lij ] of Λ is then determined by inverting
each block Λ′k with a standard LU direct solver. Finally, the inverse of A is given by the inverse
block-diagonalization that is A−1 = [ULijU

∗]. An implementation in Matlab of the above
described algorithmic inversion is given in the Appendix.

For any one of the choices of U, that is Fourier, Hartley, Cosine, and Sine matrices, the matrix
multiplications U∗AijU and ULijU

∗, appearing in the block-diagonalizations, are computed by
applying the DTT’s for n 6= 2p or the fast Trigonometric transforms (FTT’s) for n=2p, that
is the fast Fourier, Hartley, Cosine, and Sine transforms [4]- [6]. Hence, the computational
complexity (i.e. the total number of required scalar complex multiplications) of the inversion
algorithm is nO(m3) + 2m2n2 for n 6= 2p and nO(m3) + 2m2O(nlog2n) for n=2p. This shows
that the developed method is far more efficient than the LU decomposition applied to the
original matrix A, having complexity O(m3n3). We note that in several wave applications the
order n of each block may be chosen equal to 2p by selecting suitable discretizations of the
scatterer’s or radiator’s surface [7]- [10].

On the other hand, the above described inversion method can be also applied for the efficient
determination of the eigenvalues of a matrix A with U -diagonalizable blocks. Specifically, the
eigenvalues of A are those of all blocks Λ′k and thus their computation requires nO(m3) +
m2O(nlog2n) multiplications. Besides, we notice the parallel nature of the proposed inversion
algorithm, since the inversion of each specific block Λ′k can be handled by a different processing
unit. For a discussion on parallel algorithms for inverting block matrices which arise in inverse
wave scattering theory see [17].

Several numerical results are presented exhibiting the efficiency of the proposed method
and highlighting its beneficial contribution in the numerical implementation of certain scatter-
ing and radiation applications. We compare in terms of CPU time the developed algorithmic


