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Abstract

We consider a new subgrid eddy viscosity method based on pressure projection and

extrapolated trapezoidal rule for the transient Navier-Stokes equations by using lowest

equal-order pair of finite elements. The scheme stabilizes convection dominated problems

and ameliorates the restrictive inf-sup compatibility stability. It has some attractive fea-

tures including parameter free for the pressure stabilized term and calculations required

for higher order derivatives. Moreover, it requires only the solutions of the linear system

arising from an Oseen problem per time step and has second order temporal accuracy. The

method achieves optimal accuracy with respect to solution regularity.
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1. Introduction

The flow of an incompressible fluid is governed by the incompressible Navier-Stokes equations

ut − ν△u+ (u · ∇)u+∇p = f, in (0, T ]× Ω,

∇ · u = 0, in [0, T ]× Ω,

u = 0, in (0, T ]× ∂Ω,

u(0, x) = u0, in Ω,
∫

Ω

p dx = 0, in (0, T ], (1.1)

where Ω ⊂ R2 is a bounded domain with boundary ∂Ω, [0, T ] is a finite time interval, u(t, x) is

the velocity of the fluid and p(t, x) is the pressure. The viscosity ν > 0, which is inverse pro-

portional to the Reynolds number Re = O(ν−1). The body forces f(t, x) and the initial velocity
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field u0 are given. Generally speaking, for the transient Navier-Stokes equations which govern

viscous fluid flow, the natural and important Galerkin approximation is a mixed method, how-

ever the Galerkin mixed finite element approximation of (1.1) may suffer from three problems:

violation of the discrete inf-sup (or Babuska-Brezzi) stability condition, dominating advection,

and how to make fully discretization which is a simple, second order temporal accuracy.

The subgrid eddy viscosity model is a numerical stabilization of a convection dominated

and underresolved flow. This approach adds an artificial viscosity only on the fine scales, and

is referred to artificial viscosity model, which is inspired by earlier work of Guermend [4]. In [4]

subgrid scales are augmented by bubble functions. Later, Layton generalized the concept for

the stationary convection diffusion problem. In the work of Kaya and Layton [9], this model

has been connected with another consistent stabilization technique, also known as variational

multiscale method. The model has been analyzed for time-dependent Navier-Stokes equations

by John-Kaya [8] and Kaya-Rivière [10]. In [11], Kaya-Rivière gave algorithm and numerical

experiments for variational multiscale method. However, these works require velocity and

pressure finite element spaces satisfying the so-called inf-sup condition.

It is well known that the simplest conforming low-order elements like P1 − P1 triangular

element is not stable. This impacts on efficiency, since local mass conservation, the simple logic

and regular data structure associate with low-order finite element methods are very attractive

and useful on many occasions. To counteract the lack of LBB stability, low-order pairs are usu-

ally supplemented by stabilized procedures. Stabilized mixed finite element methods are often

developed by using residuals of the momentum equation, e.g., Douglas-Wang method [2], least

squares Petrov-Galerkin finite element method [14]. These residual terms must be formulated

using mesh-dependent parameters, whose optimal values are usually unknown. Particularly,

pressure and velocity derivatives in this residual vanish or are poorly approximated, causing

difficulties in the application of consistent stabilization. Other stabilized mixed methods involv-

ing non-residual stabilization are also developed, e.g., pressure projection method, it has been

applied to the Stokes problem by Bochev [1]; He-Li [6], Li-He-Chen [12] extended this method

to the Navier-Stokes problem. Pressure projection method does not require approximation of

derivatives, specification of mesh-dependent parameter, or nonstandard data structures. The

paper [12] only counteracted the lack of LBB stability condition and made a semi-discrete

analysis; the solution has oscillation when the viscosity coefficient is small.

When (1.1) is fully-discretized by accurate and stable methods, well stabilized methods with

second-order temporal accuracy are Crank-Nicolson scheme (see Heywood and Rannacher [7]),

Crank-Nicolson extrapolation scheme (see Girault and Raviart [3]), and two-level method based

on finite element and Crank-Nicolson extrapolation (see He [5]). However, all these discrete

forms are nonlinear, and the approximation can still fail for many reasons. One common mode

of failure is non-convergence of the iterative nonlinear and linear solvers used to compute the

velocity and pressure at the new time levels. We consider herein a simple, second order accurate,

and stable method for temporal discretization which addresses the failure cases mentioned

above. The method requires the solution of one linear system per time step.

In this paper, we propose a new stabilization finite element method which is combined

subgrid eddy viscosity with pressure projection method for the spatial discretization and ex-

trapolated trapezoidal rule for the temporal discretization by using lowest equal-order pair of

finite elements. The scheme stabilizes convection domination and ameliorates the restrictive

inf-sup compatibility stability, which has second order temporal accuracy of O(△t2+ν
1
2

TH+h),

where the constant in the estimate does not depend on the Reynolds number but on the reduced


