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Abstract

In an early approach, a kinetic model with multiple translational temperature [K. Xu,

H. Liu and J. Jiang, Phys. Fluids 19, 016101 (2007)] to simulate non-equilibrium flows was

proposed. In this paper, instead of using three temperatures in the x, y and z-directions,

we define the translational temperature as a second-order symmetric tensor. Under the

new framework, the differences between the temperature tensor and the pressure tensor

will be explicitly pointed out. Based on a multiple stage BGK-type collision model and

the Chapman-Enskog expansion, the corresponding macroscopic gas dynamics equations

in three-dimensional space will be derived. The zeroth-order expansion gives 10 moment

closure equations similar to that of Levermore [C.D. Levermore, J. Stat. Phys 83, pp.1021

(1996)]. The derived gas dynamic equations can be considered as a regularization of the

10 moments equations in the first-order expansion. The new gas dynamic equations have

the same structure as the Navier-Stokes equations, but the stress-strain relationship in the

Navier-Stokes equations is replaced by an algebraic equation with temperature differences.

At the same time, the heat flux, which is absent in Levermore’s 10 moment closure, is

recovered. As a result, both the viscous and the heat conduction terms are unified under a

single anisotropic temperature concept. In the continuum flow regime, the new gas dynamic

equations automatically recover the standard Navier-Stokes equations. Our gas dynamic

equations are natural extensions of the Navier-Stokes equations to the near continuum

flow regime and can be used for microflow computations. Two examples, the force-driven

Poiseuille flow and the Couette flow in the transition flow regime, are used to validate the

model. Both analytical and numerical results are presented. Theoretically, the Boltzmann

equation can be also applied to the current multiple stage gas evolution model to derive

generalized macroscopic governing equations in the near continuum flow regime. Instead

of using Maxwellian as an expansion point in the Chapman-Enskog method, the multiple

temperature Gaussian can be used as an expansion point as well.
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1. Introduction

The transport phenomena, i.e., mass, heat, and momentum transfer, in different flow regimes

are of a great scientific and practical interest. The classification of various flow regimes is based
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on the dimensionless parameter, i.e., the Knudsen number, which is a measure of the degree

of rarefaction of the medium. The Knudsen number, Kn, is defined as the ratio of the mean

free path to a characteristic length scale of the system. In the continuum flow regime where

Kn < 0.001, the Navier-Stokes equations with linear relations between stress and strain and

the Fourier’s law for heat conduction are adequate to model fluid behavior. For flows in the

continuum-transition regime (0.1 < Kn < 1), the Navier-Stokes (NS) equations are known

to be inadequate. This regime is important in many practical engineering problems. Hence,

accurate models that give reliable solutions at low computational costs, would be useful.

One of the alternative approaches to simulating non-equilibrium flow is that based on mo-

ment closures. Grad’s 13 moment equations are among the most important. They provide the

time evolution of non-equilibrium quantities, such as stress and heat flux [3]. However, due to

its hyperbolic nature, these equations lead to a well-known sub-shock problem inside a shock

layer when the Mach number is larger than a critical value. To improve the validity of the 13

moment equations, based on the Chapman-Enskog expansion, Struchtrup and Torrilhon intro-

duced terms of the super-Burnett order to the balance of pressure deviator and the heat flux

vector in the moment equations and established regularized 13 moment (R13) equations that

have much better performance in the non-equilibrium flow regime [4]. Another well-known mo-

ment system is Levermore’s 10 moment closure, which follows his hierarchy of non-perturbative

moment closures with many desirable mathematical properties [2]. These equations do not

suffer from closure-breakdown deficiencies, and they always give physically realizable solutions

due to non-negative gas distribution functions. However, the 10 moment Gaussian closure has

no heat flux even though the Navier-Stokes viscous terms can be recovered in the continuum

flow regime. In an effort to extend the Gaussian closure to include higher-order effects, Groth

et al. formulated perturbative variants of the original moment closure with a new extended

fluid dynamics model [5]. The most studied of these closures is a 35-moment closure. Recently,

McDonald and Groth took a Chapman-Enskog-type expansion of either the moment equations

or the kinetic equation and introduced the heat flux into Levermore’s 10 moment closures and

obtained extended fluid dynamics equations for non-equilibrium flow simulation [6]. This new

system leds to improved results in the transition flow regime where heat transfer has a significant

effect. Other interesting research in this direction includes quasi-gas dynamic equations [7, 8].

Currently, the Direct Simulation Monte Carlo (DSMC) method is the most successful tech-

nique for numerical prediction of low density flows [9]. The DSMC method primarily consists

of two steps, i.e., free transport and collision within each computational cell. The determina-

tion of the transport coefficients in the DSMC method is based on the particle collision model,

which is based on the well-defined theories for continuum flows. The collision models for the

particle cross section and the probability for each collision pair can be used for recovering the

dissipative coefficients in the Navier-Stokes limit. For example, the commonly used variable

hard sphere (VHS) molecular model in DSMC can be used to recover the first-order Chapman-

Enskog expansion with viscosity coefficient µ = µref (T/Tref)
ω, which is of the Navier-Stokes

order. However, when the DSMC method is used for non-equilibrium flow calculations, the par-

ticle transport from one place to another is controlled individually by each particle’s velocity,

which is not uniformly controlled by the macroscopically defined particle collision time τ , i.e.,

τ = µ/p, where µ is the dynamic viscosity coefficient and p is the pressure. Therefore, particle

transport from one place to another in DSMC may be the key for capturing of non-equilibrium

properties. Traditionally, it is noted that the concepts and measurements of the dissipative

coefficients are limited to the continuum flow regime. A generalized mathematical formulation


