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. ORDER INTERVAL TEST AND ITERATIVE
METHOD FOR NONLINEAR SYSTEMS®

- L1 Qive-vane ($545)
(Qinghua Undversity, Beijing, China)
~ Abstract
_ An order interval test for existence and mmasbluﬁnﬁa toa nonﬁﬁear sysl:en;is 'giveﬁ. It
. acmhines the interval technique and the monotons iterative technique. It has the main merita of interval

jterative methods but need not use interval arithmetic. An order interval N awhon'm&hhodisﬂlso given,
~ which is globally convergent. It is a generalization of the results in {3], [4, 13.3], =

1. Introduction

Suppose we have & nonlinear system
’

: f{z)=0, (1)
where f: Dc R*—>R" i continuous on D. Moore and L. Qi introduced interval tests
for existenoce and nniqueness of a solution 10 a nonlinear system in [1, 2]. However,
the interval arithmetic is complicated. In this paper, some n—dimensgional order
inferval iterative methods are presented. They can also be uged as interval fests for
existence and uniqueness of the solution to (1). Since they use endpoint caloulation
instead of interval arithmetic, they are simple.

In soction 2 a simple interval Newton method and its global convergence is

given. In seotion 8, an order interval Newton method is presented, which is a gene-
ralization of the Newton monotone iterative method given in [8], [4, 13.3],
The notation is as follows. Let B" be the n—dimensional real space and L(R")
the space of all real nXn mairices. or vectors 2, y & B® and matrices 4, Be& L(R"),
wo denote the usnal componentwise parfial orderings by <y and A<B. If AB<I
(BA<I), where I ig the identity matrix, then A is called a left (right) subinverse
of B. If A is both & left and a right subinverse of B, then A is called a snbinverse of
B,

Lot X = [z, 7] = {u|z<u<z} be an n—dimensional interval veotor; it is an order
intorval, W(X)=2%—2 is called the width of the interval vector X = [z, ], which
is a nonnegative vector. We bave the following properties of W (+):

() SWOX) =AW (X), AER' and >0, -'
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2 Order Interval Test and Simple Interval Newton Method
Let X =[z, £] be an arbitrary order interval, i. e. X:= fulg<u<z}, PE
L(R") is a nonsingular matrix. |
Define | :
Nu:=u— Pf(u), YuCR® (2)
for any order interval X =7, z] Then N i8 an interval operator,
Temms 2.1. Supposs f:DCR*— B° is continuous and there i3 & mairiz A &

and

L(R") suoh that _ | _ |
@ -f@<AG-), 2<%, 2 T€D,: 4
If A has nonnegative, nonsingular, left subinverss P, then | |

- {Nuluc X} NX - S | (5)

for angy X = [o, 5] CD,
Proof. Yu€ X =[gz, z]cD, by (4), we have
Nz— Nu=z—u—P(f(=) -f(u‘));z-%—u—PA(E—u’)?O,
A .
? Nu—NE=H“E—P(f(“)_"'f(E))?““ﬁ“Pﬁ(“—E)}U;
i. 0. Nz<<Nu<UNz, i. . (B) holds, | | | |
Lemma 2.2. Suppose the conditions of Lemvma 9.1 hold and X = [@, z1C.D s an
order interval. Then N X contains all solutions of (1) in X. If NXc X, then there us G
solution of (1) in X.If X N NX =0, then there is no solution of (1) in X,
Proof. Suppose «" is a solution of (1), o€ X, Then

g =a— Pf(a)=Na"ENX,

Therefore, N.X contains all solutions of (1) in X. This implies the last conclusion
directly. Since f is continuous, 80 18 Nao~=z— Pf(z). By (4) and Brouwer’s fixed point
theorem, we know jhat N has a fixed point in NX if NX — X . But all the fixed
points of N are solutions of (1) and vice versa. This proves the second conolusion.
Lemma 2.3.. Suppose the conditions of Lemma 2.1 hold and NXcX; then

I NNX)CNX, | | (6)
Proof. By (6), webave - |
g ' N(¥NX)=IN(Nz), N(Nz)]cNX
aince Nu, NEENXSXE, & - "= 7 ~
Now we construct simple interval Newton algorithm: - - - |
Algorithm 2.1. Let X%={a?, 2"]ZD, For k=0, 1, «-, if X*N NX*=0, then
- stop; otherwise, let X"*1I=I"ﬂ_.ﬁNXj‘_g e osmgr 4 g, G s S n
., _Theorem 2.1. Suppose the conditions of Lemma 2.1 hold and X°CD is an
~ order '@maz, {X* k=0, 1, -, Y i produced by Algorithm 2.1. ‘Then “all _the
éoﬁtm of (1) én X° are also in X* for any nonnegabive integer k, If X*[1 NX*e=0
lition of (1) én X°, If NX*CX* for a certain k,
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