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§ 1. Introduction

It is well-known that, if the elements my of an nxXn matrix M satisfy the
inequality
Imﬁl “g’mﬁl-—}"g}o: 1’=1J 2: ter, T, (1)
o

where J i3 a constant, then the inequality

| | M .<1/8 (2)
holds™#. But sometimes it i8 necessary to estimate the norm | M~N|.., where N is an
nXn or nXm matrix, and the use of the estimate (2), i.e. the estimate | MIN | <<
| M7 o] NV | o | N /3, does not result satisfactorily. In this paper, we give an upper
and a lower bound of |M~'N|.. for some matrices M and N. In [3], James and Riha
applied the scaling transformation to prove the convergence of some iterative schemegs
for solving gystems of linear algebraic equations. In this paper, we define an
“optimally scaled matrix” by means of the soaling transformation. Our estimates of
| M N |~ and the optimally soaled matrix are very useful in the disoussion of the
convergenoe of some iterative matrices. For, in the literature up to now, in order to
prove the convergenoce of an iterative matrix G'(4) of a matrix A, such as Jacobi
iterative matrix, SOR iterative matrix, eto., it is a common procedure to construct a
dominant matrix H (4), such that |G(A4) |<H (A) and, consequently,

p(G(4))<p(H(4)), (3)
where p(+) i8 the speotral radius of the matrix enclosed in the brackets: thus, we need
only to prove the convergenoce of the iterative matrix H(A4). Now for the optimally
scaled matrix 4 of the matrix 4 we have

p(G(4)) =p(G(4)). (4)

Evidently, (4) is better than (38), since from (4) G'(4) is convergent, if and only if
G (4) is so, and this may be obtained cagily by our estimates of | M 'N|.. We will
disouss in this way the convergence of some spliftings of a matrix. Begsides, we will
give some other applications of the estimates of | M1N|.. and the optimally scaled
mairix.

.§ 2. The Estimates of | M ~1N|.. and the Optimally Scaled Matrix

Theorem 1. If M= (my) is an nXn matriz, N = (n,;) is an n X m matriz and
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Imu]}§|‘?ﬂu|: o el e, Wy (5)
then we have o, | “ . T
IIleNl]wﬂmiax(? |5 ] / (s "E [m45] ) (6)
whors  MON|eemax S W[,

Proof. First let N=(n;) be an nX1 matrix, that is, an n—dlmensmna.l vector,
and M_i.N £ Thuﬂ MX=N It X= (iﬂj__, g, "* {En)T and

[|M'1NJF===||XJ|W—H1MMI-—l%lj
then o Moot @iy =Tty — anwm, .
Henoe, Imm.[ EAESIMERES ljghlmm |;
and |m:.|=<lm.|/(lma.¢.l—j?hlm;.;l)ﬁmf»x(lmlf(l'mfful—jZ#!mﬁI)).

Thus we have proved (6) when N is an n-dimensional voctor. Now, lot N =(n,) be
an nX m mairix, |N|=(|ny|), D=diagM, B=D—M, M=|D|—|B| and N=|N|.
It ig eagily seen that ! g 57

. !  p(DB)<p(|D|B|)<L
Therefore = (D-B) = (I+D*B+ (DB)?+..)D™,
iﬁ‘1=(|D|—-IBII)"‘i—-(I+IDI‘1!B|_+(--|D\‘1IBI)“+ 3B,
Henco - | M| <M, | M—N | <HN
and | M2V | < | H2H |

(we.also have p(MIN) <p(M~2N), provided that N is a square matrix). Now, if N;
is the veotor ﬂ{}mposed of the elements of the jth column of N, from M0 we have

gy “iﬂf|]“=n:ta.x ?(ﬂ‘lﬁ)ﬁ=m‘ax ?(ﬂ iﬁj)—m‘a.x(ﬂ ?Ej}_ﬁ,){

Taking Z N, ag the n-dimensional vector N and M 28 M mentioned above, we have

proved our theorem. '
In Theorem 1 taking N =I (the unit matrix), we get *hhe estxma,ta (2) Thus (2)
is a special case of (6). |
Theorem 2. Under the conditions of Theorem 1, if, furthermore, M i3 an
L-matriz ang N=0 then

mmZ (M7'N)y, ;-fmm (? lnﬁl /(|‘mu| —Zlmi:D) 13'1111(2 mf/Z‘.mﬁ) (7)

The proof of this theorem is similar to that of Theorem 1 and is therefore omitted,
but it may be noticed that, under the condltmns of Theorem 2, M=M, N=N,
M2=0 and M~IN=0. |

It is well-known that"' if A= (a,;) >0, then

m‘in g ay<<p(A) %m?x 2 Gy (8)
Therefore, we have

Corollary 1. If M= (m,;) id an nXn L-matrix, N=(n;) i3 an nXn nonnega.{
tive matrix and? my>0 (4=1, 2, «++, n), then



