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Absatract

A comparison by Wang and Xal6! botween 8. Bmale’s cost estimation for Newton’s method and
that of the anmthor’s for Kuhn's algorithm, both aiming at the zero finding of complex polynomials,
showed improments the advantage of the latter in finding zeros and approximatlo 26108. In this paperT,
important on the above work are made. Furthermore, a probabiligtic estimation of the monotonicity

of Kuhn's algorithm is obtained.
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§ 1. Introduction

A comparison between S. Smale’s cost sstimation for Newton’s method and thab
of the author’s for Kuhn’s algorithm, both aiming at the zero finding of complex
polynomials, was presented by Wang and Xu™'. It turns out that the latter is much
better both in finding zeros and in finding approximate zeros. The ratios are respec-
tively from n°/p’ o n log (n/8) and from n’/p’ 0 n® log (n/p), where n is the degree
of polynomials, 6>-0 is the accuracy demand for resulted zeros, and g is the prob-
ability allowing the corresponding estimation to fail, 0<<p<<1.

James Renegar obtained similar requlis™. His Lemma 3.1 and Proposition 5.6
in [3].

Here we improve the results of Wang and Xu®. A new ocost estimation for
Kuhn’s algorithm is given by Theorem 5 19 while Theorem 3.8 answers prob-
abilistically the problem of finding the approximate Zeros of polynomials suggested by
§. Smale. This is followed by a discussion in Theorem 4.15 on a probabilistic
estimation of the monotonicity of Kuhn’s algorithm.

§ 2. Cost of Kuhn’s Algorithm

Tn order 1o be congistent, we use the same notatlon as ased by Kuhn™, For
gimplioity, let z=0 and A=1.

The algorithm can be sketched as tollows. The half-space OX[—1, o0) id
gimplicially triangulated such that every vertex is in some plane U;=CX {d}, d=
—1, 0, 2, -+, and each plane G, 18 then subdivided into isosceles right triangles
with right-angle sideg equal 1o s(d), where s(—1) =1 and s(d) =27¢, d=0.

The labelling for vertices in O, d=0, 18 that (the argument of a complex
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number is restricted to (—m, =])
1, if f(2) =0 or —=/8<arg f(2) <=/3,
1(2) =42, if m/8<arg f(z)<m,
8, if —w<arg f(2) <—wu/3,

n—1
where f(z) =2+ > a#, s € C, while the labelling for ('_, uses 2" instead of f(2).
i=0

Lot Q be the square in C_; bounded by &= +-m and y= tm, where z=p+ 4y and
m=[8(1+~/2 )n/4xw]. The symbol [a] is the least integer not less than a.

A triangle is said 1o be completely labelled (o.l. triangle) if its three vertices
aro exactly labelled 1, 2 and 3.

Proposition 2.1. Let Z; be an elementary oube of the triangulation between
C, and Cy,4, and lot B; be a oylinder with axis {0} % [d, d+1]. Let o4 denote the
number of tetrahedra which belong to Z; and are wholly contained in B,;. Then

g{ Brvol(ZsN By), ifd=—1,
TaN\140vol (Ss N By) -2%,  if d=0.

Proof. Let ¥V4=vol(Z;NB;) for convenience. For d= —1, we always have 1>
V4=0. Obvigusly, if V,<<1/2, then g4=0; if V4=1, then Z;CBy. So o4=5. In the
case 1/2« V<1, we have o<1 beoause every vertical edge of 2; fouches four tetra-
hedra contained in =;. In any of the above cases, the proposition is true.

For d=0, 0<V,<<2-%. We disouss eight cases. Since the central point of the
~upper square is touched by all the fourteen tetrahedra of the cube, it is easy to
obtain the corresponding resulis for o by simple volume analysis:

(1) Va=27%, og=14;

(2) .'81 2% 7, <23 T4 <<9;

(3) % 2—ﬂd-<n<::% 9-2¢. 06<8;

@ = 2HUY T2, - o<y

) omcy.<io® oy ¥
® - 2-N{V¢<% 9-28 5e<3;

M + AU <2, Fa<1:

(8) 0<Vs<3 2%, "y

In all the eight cases, cy<14+F 2%, It completes the proof.
Lemma 2.2. Suppose that w, are complex constanis, k=1, 2, 3, and ~u/3<

Wy

arg wy <</ 3; w/3<arg wasm; — w<arg wa<< —mw/3. Then arg — | =——, a*rlarg—lﬁ
5 o WU 3 e
i ﬂf‘ﬂ.rgju_l ;_ﬂ?_
8 ° Ws 3 *-
Proof. Since 5 3
\ﬂ.]:'gﬂ <2—W§=}_0<‘:argwg—'argw1<: E‘E, (2.1)




