ESTIMATION OF THE SEPARATION OF TWO MATRICES"

Sun Ji-guang (孙继广)

(Computing Center, Academia Sinica, Beijing, China)

Abstract

The estimation of the solution to the matrix equation AX-XB=C is primarily dependent on the quantity sep(A, B) introduced by Stewart^[5]. Varab^[6] has given some examples to show that $sep_F(A, B)$ can be very small even though the eigenvalues of A and B are well separated. In this paper we give some lower bounds of $sep_F(A, B)$.

§ 1. Introduction

Investigations of perturbation bounds for invariant subspaces are frequently reduced to estimations of upper bounds for the solution X to the matrix equation^(1,5)

$$AX-XB=C (\lambda(A) \cap \lambda(B)=\emptyset),$$

where $\lambda(\cdot)$ denotes the set of all eigenvalues of a matrix, \emptyset is the empty set. Stewart has diffined the separation between A and B

$$sep(A, B) = \min_{|X|=1} |AX - XB|,$$
 (1.1)

where | | is any matrix norm; thus we obtain

$$||X|| \leq ||C||/\operatorname{sep}(A, B).$$

Therefore it is necessary to find lower bounds of sep(A, B) whenever one is investigating perturbations of invariant subspaces.

For A and B normal, Stewart^[5] shows that if $\lambda(A) = \{\lambda_i\}$ and $\lambda(B) = \{\mu_i\}$ then

$$\sup_{|X|_{p}=1} ||AX - XB||_{F} = \min_{i,j} ||\lambda_{i} - \mu_{j}|, \qquad (1.2)$$

where $\| \ \|_F$ is the Frobenius norm. However, for A and B non-normal, and

$$\lambda(A) \cap \lambda(B) = \emptyset,$$

up to now we have only the following estimation[5]

$$0 < \operatorname{sep}(A, B) \leq \min_{i,j} |\lambda_i - \mu_j|; \tag{1.3}$$

and Varah⁽⁶⁾ has given some examples to show that $sep_F(A, B)$ can be very small even though the eigenvalues of A and B are well separated.

In this paper we try to give some lower bounds of $sep_F(A, B)$. We use reductions of A and B to Jordan canonical forms in § 2 and to some block diagonal forms in § 3.

Notation. The symbol $C^{m\times n}$ denotes the set of complex $m\times n$ matrices. $I^{(n)}$ is the $n\times n$ identity matrix, and O is the null matrix. Sometimes we express the block

⁽¹⁾ Received June 1, 1982.

diagonal matrix $[A_1, \cdots, A_p]$ as $[\cdots, A_i, \cdots]_{(p)}$. $\begin{pmatrix} 0 & [A_1, \cdots, A_s] \\ 0 & 0 \end{pmatrix}_{(p)}$ denotes the matrix $\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & A_s \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \vdots \end{pmatrix}$ in which every row and column contains p submatrices.

Let $\| \|_2$ denote the spectral norm and $\varkappa(Q) = \|Q\|_2 \|Q^{-1}\|_2$. For $A \in \mathbb{C}^{m \times m}$ with $\lambda(A) = \{\lambda_i\}$ we write $\Delta_F(A) = \{\|A\|_F^2 - \sum_{i=1}^m |\lambda_i|^2\}^{\frac{1}{2}}$.

§ 2. Lower bounds of $sep_F(A, B)$ (I)

Let $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, $\lambda(A) \cap \lambda(B) = \emptyset$ and $X \in \mathbb{C}^{m \times n}$. Now we consider to estimate lower bounds of the separation

$$sep_F(A, B) \equiv \min_{\|X\|_{F=1}} \|AX - XB\|_{F_*}$$
(2.1)

First of all we use the Kronecker product to get another representation for $\operatorname{sep}_F(A, B)$. The Kronecker product of any two matrices $O = (c_{ij}) \in \mathbb{C}^{p \times q}$ and $D \in \mathbb{C}^{r \times s}$ is the matrix $O \otimes D = (c_{ij}D) \in \mathbb{C}^{p \times q}$. We associate the matrix X in (2.1) with the mn-vector x which is the direct sum of the column vectors of X. Use the same method we associate the matrix AX - XB in (2.1) with the mn-vector Tx, where

$$T = I^{(n)} \otimes A - B^{T} \otimes I^{(m)} \in \mathbb{C}^{mn \times mn}$$

$$(2.2)$$

(see [4], 8—9), B^T stand for transpose of B. From $\lambda(A) \cap \lambda(B) = \emptyset$, the matrix T is nonsingular (see [3], 259. Theorem 8.3.1), thus we obtain

$$\operatorname{sep}_{F}(A, B) = \min_{\|x\|_{2} = 1} \|Tx\|_{2} = \min_{x \neq 0} \frac{\|Tx\|_{2}}{\|x\|_{2}} = \left(\max_{y \neq 0} \frac{\|T^{-1}y\|_{2}}{\|y\|_{2}}\right)^{-1} = \|T^{-1}\|_{2}^{-1}. \quad (2.3)$$

Suppose that the Jordan canonical decomposition of A and B^T are

$$A = Q_A J_A Q_A^{-1}, \qquad B^T = Q_B J_B Q_B^{-1}, \qquad (2.4)$$

where

$$J_{A} = A_{A} + N_{A}, \ A_{A} = [\cdots, \lambda_{i}I^{(m_{i})}, \cdots]_{(p)}, \ N_{A} = [\cdots, N_{i}(A), \cdots]_{(p)},$$

$$N_{i}(A) = [\cdots, N_{i,k}(A), \cdots]_{(k_{i})} \in \mathbb{C}^{m_{i} \times m_{i}}, \ 1 \leq i \leq p;$$

$$J_{B} = A_{B} + N_{B}, \ A_{B} = [\cdots, \mu_{j}I^{(n_{j})}, \cdots]_{(q)}, \ N_{B} = [\cdots, N_{j}(B), \cdots]_{(q)},$$

$$N_{j}(B) = [\cdots, N_{j,i}(B), \cdots]_{(L_{i})} \in \mathbb{C}^{n_{j} \times n_{j}} \cap 1 \leq j \leq q.$$

$$(2.5)$$

All the matrices $N_{i,k}(A) \in \mathbb{C}^{m_{i,k} \times m_{i,k}}$ and $N_{j,i}(B) \in \mathbb{C}^{n_{j,k} \times n_{j,l}}$ are nilpotent as $\begin{pmatrix} 0 & 1 \\ & & \\ & & \\ & & \end{pmatrix}, \sum_{k=1}^{k_i} m_{i,k} = m_i, \sum_{i=1}^{p} m_i = m, \sum_{i=1}^{l} n_{j,i} = n_j \text{ and } \sum_{i=1}^{q} n_i = n. \quad \lambda_s \neq \lambda_s \text{ and } \mu_s \neq \mu_s$

if $s \neq t$. The highest orders of the Jordan blocks of J_R and J_B are r_A and r_B respectively, i.e.

$$r_A = \max_{i,k} \{m_{i,k}\}, \quad r_B = \max_{j,i} \{n_{j,i}\}.$$
 (2.6)