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In this paper, We deal with the discrete-discontinuous finite element method for solving the time-
. dependent nevtron transport equation in two-dimensional planar geometry. Its stability and convergence -
arc proved. The numerical results are given, Compared with BN method it is of higher accuracy and

SUpEIConVEIZence.

The discrete—ordinate method™®? (DSN method) is an effective method for solving
neutron transport equations. Its computing process is gsimpler and the amount of
program and calonlation is less than that of other methods. And iis error, as can be
demonstrated, is at most of order 2. But solving some physi{ﬁi problems, a more
accurate approximate solution, and o0 a solution of higher acouracy with less store,

LS

aro degired. - Therefore, it-is natural to adoept the finite elemen$ method in solving
noutron transport problems. Although the variational method (Ritz method) can be
used, the complexity of the formula and large amount of program and calculation
have impeded its application. On the other hand, while the Galerkin method can be
used in the finite element method for its simpler computing process and program, it
requires 1o solve of a large system of linear algebraio equationsq and will give rise to
more difficulties. As the discontinuous finite element method hag the advantages of
Foth DSN and FEM, it provides a better way to. solving multidimensional transpors
problems. . s W TG L . R G s wm A §

The discontinuous finite element method, where the angular flux is agsumed to be
given by a low—order polynomial in each mesh, has been used t0 solve the disorete—
ordinate equations. It has been considered in[1, 2, 3] for solving the simplified steady
neufron iransport equations. ,

In this paper, we dedoribe the basic steps of this method for solving time—dependent
neutron transport equations in two—dimensional planar geometry. Some egtirnations
of solution and error are given and the stability and superconvergency of the met hod
are proved. Here, Urank-Nicholson central difference approximation is used for the
time variable, while the discrete ordm;ate appmiifﬁhﬁﬁn for the angular variables.

Furthermore, we have used the above method o calculate many numerical
examples for one—dimensional glab problem, The results demonsirate higher accuraocy,
fagter rate of convergence and higher effigiency. .
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1 Numerlcal Method

We consider the initial-boundary value pmblem for the t1me—depend ent nentron
tranﬂport. equation in two-dimensional planar geometry:
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the funﬁﬁun Py (t @, 4, W, ¥) represents the flux'of g-group neuiron ab the point
(¢, @, ¥) in the angular direction 0= (u, v), o, is the nuclear macroscopio total cross
section, S, (p) represents. sources -of neutrons due to scattering and fission, and F,
inhomogeneous source terms. Let us assume ‘that the domains Bgy, Qq, B¢ take the
forms: B,y={0s5a< X, 0<y<Y}, Qo= {0y’ 4121}, B={0<t<T}. I'is the
boundary: of* By Which i8 s=X or y=Y. Denote by sy the unit vector in the
direction of outward normal to I,

We choose a suitable set of dlscrete direction and woights {£2ms, Wms}, ‘where
£2,= (ome; Vime) 5 g=1, 2, «, N, m=1, 2, -, M, For simplioity, we omit the
group index g and rastrm’s our discussion 1o one—group and isotropic scaltering.
Hence, the dmcrete——ﬂrdmate equﬂ.tlons can be Wnﬂ:en ag
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