
Journal of Computational Mathematics

Vol.30, No.3, 2012, 298–310.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1110-m3537

EXPONENTIALLY FITTED LOCAL DISCONTINUOUS
GALERKIN METHOD FOR CONVECTION-DIFFUSION

PROBLEMS*

Tao Yu

Department of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China

Email: yutao@jgsu.edu.cn

Xingye Yue

Department of Mathematics, Soochow University, Suzhou 215006, China

Email: xyyue@Suda.edu.cn

Abstract

In this paper, we study the local discontinuous Galerkin (LDG) method for one-

dimensional singularly perturbed convection-diffusion problems by an exponentially fitted

technique. We prove that the method is uniformly first-order convergent in the energy

norm with respect to the small diffusion parameter.
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1. Introduction

In this paper we consider the one-dimensional convection-diffusion problem:

{

Lǫu := −ǫu′′ + (au)′ = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where ǫ is a small positive diffusion coefficient and the convection velocity a is positive.

This is a fundamental model problem in computational fluid dynamics. In general, the

solution of the problem has a boundary layer at x = 1 and the width of the layer is O(ǫ ln(1/ǫ)).

When ǫ is big enough, the problem can be solved well by standard finite element methods. But

when ǫ is too small, that is to say the problem is convection dominated, the standard finite

element methods do not work well, except for the partition step h < ǫ. But it maybe is

impossible, since the computing cost is too expensive.

In order to avoid the difficulties, many investigators have resorted to methods based on

exponentially-fitted techniques. In [8–10, 18], the authors explored the so-called L spline to

solve the problem and gave some uniform error estimates with respect to the small parameter

ǫ. However, there are quite a few other techniques developed to treat this problem. We refer to

two books focusing on this topic [15, 17]. In [11], the author proposed the interesting tailored

finite point method to solve the singular perturbation problem. There are some other papers

(see, e.g., [12,16]) about this method. An upwind finite difference scheme with the grid formed

by equidistributing a monitor function is proposed in [14].
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Recently, some authors (see, e.g., [1, 4–7, 19]) applied DG or LDG methods to solve the

problem. In [6], the authors analyzed the minimal dissipation LDG method (MD-LDG) for

convection-diffusion or diffusion problems. They took the stabilization parameter α to zero on

all the inter-element faces except on some part of the Dirichlet boundary to guarantee that

the method is well defined. In [4], the authors used LDG method to solve one dimensional

time-dependent convection-diffusion problem and obtained some optimal priori error estimates.

The numerical result shows that, on a uniform mesh, it can not get the accuracy when the

mesh-size h is bigger than the small diffusion parameter ǫ.

In fact, in all the above mentioned works, only piecewise polynomials are used in the approx-

imate finite element spaces and all the error estimates had the form like ||u− uh|| ≤ Chα||u||β,
where u is the exact solution and uh is the numerical solution. In general, for singularly per-

turbed problems, the constant C and the Sobolev norm ||u||β depend on the negative power

of the small diffusion parameter ǫ. Therefore, when the mesh-size h > ǫ, this kind of error

estimates does not make sense.

As known, one of the advantages of the DG methods is the flexibility with the finite element

approximation space. So in [20], the authors used the approximate spaces including non-

polynomial functions such as exponentials. With properly selected spaces, they got much more

accurate numerical results than only using piecewise polynomial spaces. However there is no

theoretical result given on the uniformly convergence of such methods.

In this paper, we will consider a minimal dissipation exponential-fitted LDG method with no

penalty involved, i.e. the stabilization parameter α is identically zero everywhere. A first order

uniform convergence is obtained in the energy norm as: ‖q − qh‖L2(0,1) ≤ ch, with q =
√
ǫu′

and qh the approximation for q. Here ‘uniformly’ means that the constant c > 0 in the above

estimate is independent of either the small parameter ǫ and h or the exact solution u. To do so,

the ingredient is that only ‖u′‖L1(0,1) is involved in the error estimate. Throughout this paper,

the constant c is independent of the parameter ǫ and the exact solution u.

The paper is structured as follows. In Section 2, we review the minimal dissipation LDG

method and then present the numerical scheme and the main result on the uniform error

estimate, which is proved in Section 3. In Section 4, we show some numerical results.

2. Exponentially Fitted LDG Method

2.1. Review of LDG method

In this subsection, we introduce the minimal dissipation LDG method discussed in [6]. At

first, by introducing a new variable, q =
√
ǫu′, the problem (1.1) can be rewrite as follows:















(au−
√
ǫq)′ = f(x), x ∈ (0, 1),

q + (−√
ǫu)′ = 0, x ∈ (0, 1),

u(0) = u(1) = 0.

(2.1)

Let {xj+ 1
2
}Nj=0, j = 1, · · · , N be a uniform partition of the interval [0, 1]. Denote by Ij =

(xj− 1
2
, xj+ 1

2
), and h = 1/N . Multiplying (2.1) by smooth functions v, w, and integrating over


