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Abstract

The problem of finding a L∞-bounded two-dimensional vector field whose divergence

is given in L2 is discussed from the numerical viewpoint. A systematic way to find such

a vector field is to introduce a non-smooth variational problem involving a L∞-norm.

To solve this problem from calculus of variations, we use a method relying on a well-

chosen augmented Lagrangian functional and on a mixed finite element approximation.

An Uzawa algorithm allows to decouple the differential operators from the nonlinearities

introduced by the L∞-norm, and leads to the solution of a sequence of Stokes-like systems

and of an infinite family of local nonlinear problems. A simpler method, based on a L2-

regularization is also considered. Numerical experiments are performed, making use of

appropriate numerical integration techniques when non-smooth data are considered; they

allow to compare the merits of the two approaches discussed in this article and to show

the ability of the related methods at capturing L∞-bounded solutions.
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1. Introduction and Motivations

The purpose of this article is to investigate the numerical solution of the following problem

Find u ∈ (L∞ (Ω) ∩W 1,p(Ω))2 such that ∇ · u = f in Ω ⊂ R
2, (1.1)

where f ∈ Lp(Ω) is given. This problem is under-determined in the sense that the solution is

defined up to the addition of an arbitrary function with zero curl. It is common to look for a

solution that is the gradient of a potential function (as in electromagnetism for example). The

resulting potential function is therefore the solution of a Poisson equation.

However, when p = 1 or p = +∞, obtaining a solution which is the gradient of a potential

function is not necessarily possible, see, e.g., [1, 2]. Moreover, when considering p = 2, the

gradient of such a potential function obtained by solving a Poisson equation is not necessarily

bounded [3]. Therefore, we focus hereafter on the so-called non-smooth case that consists in

enforcing bounded solutions instead of gradients of potential functions.

* Received June 8, 2011 / Revised version received November 15, 2011 / Accepted December 14, 2011 /

Published online July 6, 2012 /



Regularization Methods for the Divergence Equation ∇ · u = f 355

This problem has been studied from the theoretical viewpoint in [1, 2, 4], with a particular

emphasis on the torus domain, using arguments from [5]. Regularity issues have been discussed

in [6, 7]. The case p = 1 is partially discussed in [8]. In [1], it is shown that one can actually

replace L∞(Ω) by C0
(

Ω
)

in (1.1) if p = 2.

In order to search for a bounded solution, we introduce an equivalent variational formulation.

More precisely, for g > 0 a given parameter and f ∈ Lp(Ω) given, we look for the solution of

inf
v∈Ef

[

1

p

∫

Ω

|∇v|p dx+ g ||v||∞

]

, (1.2)

where ||v||∞ := ess supx∈Ω

√

v21 + v22 , for all v = {v1, v2} and

Ef =
{

v ∈ (W 1,p(Ω) ∩ L∞(Ω))2 , ∇ · v = f in Ω
}

.

This choice of the objective function allows to enforce the appropriate regularity of the solution.

The minimizer of this constrained variational problem provides a solution to the divergence

equation (1.1) with the appropriate regularity, and allows to “fix the constant” in the family

of solutions of the divergence equation. From now on, we focus on the case p = 2 (f ∈ L2(Ω)).

Actually for some test problems, we will assume that f ∈ Lp(Ω) with 1 ≤ p < 2.

Numerical methods for such non-smooth variational problems require an appropriate treat-

ment of the non-Hilbertian features introduced by the sup-norm. Such numerical algorithms

for non-smooth problems have been developed in the framework of fully nonlinear elliptic prob-

lems [9, 10], or for generalized eigenvalue problems [11–14].

We advocate an augmented Lagrangian algorithm that allows to decouple the solution of a

non-smooth variational problem into the solution of a sequence of Stokes-like systems (solved for

instance with stabilized continuous finite elements [15, 16]), and non-smooth problems solved

locally (namely at each grid point of a finite element triangulation). The treatment of the

sup-norm is achieved with a duality approach that has already been successfully applied in [17].

In a second part, we will address a L2-regularization of problem (1.1) and compare with the

previous approach. Namely, for γ > 0, we look for a solution of

inf
v∈Tf

[

1

2

∫

Ω

|∇v|2 dx+
γ

2

∫

Ω

|v|2 dx

]

(1.3)

with

Tf =
{

v ∈ (H1(Ω))2 , ∇ · v = f in Ω
}

.

This variational problem leads to the solution of a Stokes system.

Regularization methods are quite common in the literature as basic tools for the solution

of ill-posed problems. They are well-known in the framework of inverse problems, starting

with [18–21]. In [22, 23], classical questions such as the appropriate choice of parameters and

generalizations to family of regularization methods have been addressed. Many advances have

been recently made when relying on non-smooth regularization terms using L1 or L∞ norms

(or their algebraic equivalents), see, e.g., [24, 25] This approach has already been used by the

authors in the framework of non-smooth problems, see, e.g., [17, 26].

This article is organized as follows: Section 2 details the generic model problem and provides

some existence results as well as the description of some properties of the solution of (1.2). In

Section 3, an augmented Lagrangian algorithm à la Uzawa is described. The discrete equiva-

lent of this algorithm, obtained after discretization with continuous mixed piecewise linear finite

elements, is detailed in Section 4. Numerical experiments with the L∞-regularization are per-

formed in Section 5, for smooth and non-smooth data, and a computational investigation of the

convergence of the approximations (with respect to the mesh size) is achieved. Section 6 details

the L2-regularization method, and presents numerical results to compare both approaches.


