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Abstract

We propose a new reconstruction scheme for the backward heat conduction problem.

By using the eigenfunction expansions, this ill-posed problem is solved by an optimization

problem, which is essentially a regularizing scheme for the noisy input data with both

the number of truncation terms and the approximation accuracy for the final data as

multiple regularizing parameters. The convergence rate analysis depending on the strategy

of choosing regularizing parameters as well as the computational accuracy of eigenfunctions

is given. Numerical implementations are presented to show the validity of this new scheme.
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1. Introduction

For a bounded domain Ω ⊂ R
N(N = 1, 2, 3), consider the heat conduction problem















∂u
∂t = ∇ · (a(x)∇u), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

For given initial data u0(x), this forward problem is well-posed(Chapter 3, Theorem 3.2,

[13]), which defines a map G : u0(·) ∈ L2(Ω) 7→ u(·, T ) ∈ H1
0 (Ω).

Now assume that u0(x) is unknown, while the final data is given by u(x, T ) = f(x), x ∈ Ω.

The backward problem is to solve u(x, t) for t ∈ [0, T ) from given f(x) or its measurement data

f δ(x) satisfying ‖f δ − f‖L2(Ω) ≤ δ for some known error level δ > 0. It is well-known that this

problem is ill-posed due to the irreversibility of heat conduction along time direction.

For this ill-posed problem with wide engineering background [19, 20], many regularizing

schemes have been researched thoroughly, which focus on the construction of the approximate

solution uδ(x, t) from f δ(x) and the convergence rate analysis on ‖uδ(·, t) − u(·, t)‖ as δ → 0.

Of course, these two issues depend on the regularizing scheme. One of the well-known scheme
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is the so-called quasi-reversibility method [3], which firstly constructs the regularizing solution

uδ0(x) for the initial data and then gets uδ(x, t) for t ∈ (0, T ) by solving the direct problem

(1.1). The convergence of such kinds of schemes can be established in terms of the convergence

of initial data uδ0(x), see [4–6, 9]. For solving uδ(x, t) for t ∈ (0, T ) directly from f δ(x) with

the Hölder stability of order t
T , the readers are refereed to [1, 17, 18, 23]. The other work for

backward heat problem can be found in [2, 15, 16, 21].

Recently, some attempts to construct a regularizing solution with explicit expression have

received much attention. The advantage of this new idea is that the well-posedness of the reg-

ularizing problem is guaranteed automatically, provided that the noisy input data be modified

appropriately. Then the numerical computation of the regularizing solution for all t ∈ [0, T )

is much easy, for example, see [4, 7, 14, 22] for the mollification method. We call such kind of

scheme as data regularization.

In this paper, we propose a new regularizing scheme along this direction. By expanding

the noisy data f δ(x) in terms of the base functions {ϕk(x, T ) : k ∈ N} solved from the heat

conduction process, the regularizing data for the noisy measurement are constructed using the

finite approximate terms expansion, where both the number of expansion terms and the ap-

proximate accuracy are considered as the regularizing parameters simultaneously. Then the

regularizing solution uδ(x, t) for all t ∈ [0, T ) can be constructed from the approximate final

data explicitly. In this regularizing scheme for backward heat problem, all the ill-posedness

is concentrated on the final data fitting process. Such a scheme is essentially a regularizing

technique for the input data. We analyze the convergence of this new scheme and give some

numerical implementations. It is interesting that our regularizing scheme provides the conver-

gence rate of ‖uδ(·, t)− u(·, t)‖ decreasing by the factor e−λ1t for fixed error level δ > 0, which

is physically reasonable from the smoothing property of direct heat conduction process, where

λ1 > 0 is the minimum eigenvalue of the operator −∇ · (a(x)∇).

We would like to emphasize the difference between our data fitting technique and the classical

TSVD method to deal with the linear ill-posed problems. For our problem, u(x, t) for t ∈ [0, T )

satisfies a linear integral equation of the first kind, so the TSVD method can be used to solve this

equation, where Tikhonov regularization can be combined together to determine the truncation

term from the noise level. In this scheme, the regularization technique is applied at each time

t ∈ [0, T ), and therefore the regularization equation should be solved for every time t. However,

in our data fitting scheme, we only regularize the final measurement data uδ(x, T ) by its base

function expansion, with both the truncation term and the approximate accuracy as regularizing

parameters. Then the approximate solution for any t ∈ [0, T ) can be expressed explicitly using

the spatial base function of elliptic operator. In other words, we extract the ill-posedness of the

problem from the original parabolic system with the help of the eigensystem of elliptic operator

−∇ · (a(x)∇u). Therefore, the novelty of the proposed scheme in this paper compared with

the classical TSVD method is that we can decrease the amount of computations by solving the

regularizing equation only one times at t = T and then get the regularizing solution for all

t ∈ [0, T ) explicitly with convergence rate estimate. Moreover, we also analyze the influence of

the computational error for the eigensystem and give an explicit error estimate.

This paper is organized as follows. In Section 2, we construct the regularizing solution

explicitly. Then in Section 3, we give the convergence analysis on the regularizing solution

using the exact eigenfunction expansions. In Section 4, we consider the convergence for the

noisy eigensystem, noticing that both the eigenfunctions and the eigenvalues must be computed

numerically for general heat conduction system. In this case, the error η in computing the


