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Abstract

In the paper, we analyze the L2 norm error estimate of lower order finite element

methods for the fourth order problem. We prove that the best error estimate in the L2

norm of the finite element solution is of second order, which can not be improved generally.

The main ingredients are the saturation condition established for these elements and an

identity for the error in the energy norm of the finite element solution. The result holds

for most of the popular lower order finite element methods in the literature including: the

Powell-Sabin C1
−P2 macro element, the nonconforming Morley element, the C1

−Q2 macro

element, the nonconforming rectangle Morley element, and the nonconforming incomplete

biquadratic element. In addition, the result actually applies to the nonconforming Adini

element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang-

Xu element and the Wang-Shi-Xu element provided that the saturation condition holds

for them. This result solves one long standing problem in the literature: can the L2 norm

error estimate of lower order finite element methods of the fourth order problem be two

order higher than the error estimate in the energy norm?
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1. Introduction

We shall consider the L2 norm error estimate of the finite element method of the Kirchhoff

plate bending problem reads: Given g ∈ L2(Ω) find w ∈ W := H2
0 (Ω) with

a(w, v) = (g, v)L2(Ω) for all v ∈ W . (1.1)

The bilinear form a(w, v) reads

a(w, v) : = (∇2w,∇2v)L2(Ω) for any w , v ∈ W , (1.2)

where ∇2w is the Hessian of w. For this fourth order elliptic problem, there are a number of

conforming/nonconforming finite element methods in the literature, see for instance, [6, 8, 20]

and the references therein.
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Let Wh be some conforming or nonconforming finite element space defined over the trian-

gulation Th of the domain Ω ⊂ R
2 into rectangles or triangles, the discrete problem reads: Find

wh ∈ Wh such that

ah(wh, vh) = (g, vh)L2(Ω) for all vh ∈ Wh . (1.3)

The broken version ah(·, ·) follows

ah(wh, vh) : = (∇2
hwh,∇

2
hvh)L2(Ω) for any wh , vh ∈ W +Wh ,

where ∇2
h is the discrete counterpart of the Hessian operator ∇2, which is defined elementwise

with respect to the triangulation Th since Wh may be nonconforming. If Wh ⊂ W , we have

ah(wh, vh) = a(wh, vh) for wh, vh ∈ Wh.

Under some continuity condition of the discrete space Wh [6, 8, 20], the discrete problem

(1.3) will be well-posed and consequently admit a unique solution. Define the residual

Resh(vh) : = (g, vh)L2(Ω) − ah(w, vh) for any vh ∈ Wh . (1.4)

Then we have the following Strang Lemma:

‖∇2
h(w − wh)‖L2(Ω) ≤ C

(

sup
vh∈Wh

Resh(vh)

‖∇2
hvh‖L2(Ω)

+ min
vh∈Wh

‖∇2
h(w − vh)‖L2(Ω)

)

. (1.5)

Here and throughout this paper C is some generic positive constant which is independent of the

meshsize. We are interested in some lower order methods: the nonconforming Morley element

[15, 17, 21], the Powell-Sabin C1– P2 macro element [18], the C1– Q2 macro element [10], the

nonconforming rectangle Morley element [24], and the nonconforming incomplete biquadratic

element [16, 27]. For these discrete methods, it follows from the Strang Lemma that

‖∇2
h(w − wh)‖L2(Ω) ≤ Ch‖g‖L2(Ω), (1.6)

provided that w ∈ H3(Ω) ∩ H2
0 (Ω). Here and throughout this paper, h denotes the meshsize

which is defined by

h : = max
K∈Th

hK with hK the diameter of K. (1.7)

By the dual argument, we have

‖w − wh‖L2(Ω) + ‖∇h(w − wh)‖L2(Ω) ≤ Ch2‖g‖L2(Ω), (1.8)

provided that Ω is smooth or convex, where ∇h is the elementwise defined counterpart of the

gradient operator ∇. By the approximation property of the discrete space, we have

inf
vh∈Wh

‖w − vh‖L2(Ω) ≤ Ch3|w|H3(Ω), (1.9)

for all the methods under consideration. Compared to the approximation result (1.9), the L2

norm error estimate in (1.8) is obviously not optimal. Then one long standing problem for the

finite element method of the fourth order problem is: can the L2 norm error estimate of lower

order finite element methods of the fourth order problem be two order higher than the error

estimate in the energy norm? The aim of the paper is to prove that the L2 norm error estimate

in (1.8) can not be improved for these methods under consideration. The main ingredients are

the saturation condition and the identity of the error in the energy norm.


