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Abstract

Error reduction, convergence and optimality are analyzed for adaptive mixed finite

element methods (AMFEM) for diffusion equations without marking the oscillation of

data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error

estimator, is shown to reduce with a fixed factor between two successive adaptive loops,

up to an oscillation. Secondly, the convergence of AMFEM is obtained with respect to the

quasi-error plus the divergence of the flux error. Finally, the quasi-optimal convergence

rate is established for the total error, i.e. the stress variable error plus the data oscillation.
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1. Introduction and Main Results

Let Ω be a bounded polygonal in R
2. We consider the following diffusion problem with

homogeneous Dirichlet boundary value:

{
−div(A∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where the diffusion tensor A ∈ L∞(Ω;R2×2) is a symmetric and uniformly positive definite

matrix, and f ∈ L2(Ω). The choice of boundary conditions is made for ease of presentation,

since similar results are valid for other boundary conditions.

Adaptive methods for the numerical solution of PDEs are now standard tools in science

and engineering to achieve better accuracy with minimum degrees of freedom. The adaptive

procedure of (1.1) consists of loops of the form

SOLV E → ESTIMATE →MARK → REFINE. (1.2)

A posteriori error estimation (ESTIMATE) is an essential ingredient of adaptivity. We refer

to [1, 2, 7, 17, 30] for related works on this topic. The analysis of convergence and optimality of

the whole algorithm (1.2) is still in its infancy.
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The convergence analysis of standard adaptive finite element method (AFEM) started with

Döfler [16]. Döfler introduced a crucial marking, and proved the strict energy error reduction

of the standard AFEM for the Laplacian under the condition that the initial mesh T0 satisfies

a fineness assumption. Morin et al. [24, 25] showed that such strict energy error reduction can

not be expected in general. Introducing the concept of data oscillation and the interior node

property, they proved convergence of the standard AFEM without fineness restriction on T0
which is valid only for A in (1.1) being piecewise constant on T0. Inspired by the work by

Chen and Feng [11], Mekchay and Nochetto [22] extended this result to general second elliptic

operators and proved that the standard AFEM is a contraction for the total error, namely the

sum of the energy error and oscillation. Recently, Cascon, et al. [10] presented a new error

notion, the so-called quasi-error, namely the sum of the energy error and the scaled estimator,

and showed without the interior node property for the self-adjoint second elliptic problem that

the quasi-error is strictly reduced by the standard AFEM even though each term may not be.

Very recently, in [20, 21] Hu et al. first proved the convergence of adaptive conforming and

nonconforming finite element methods without marking the oscillation of data.

Besides convergence, optimality is another important issue in AFEM which was first ad-

dressed by Binev et al. [4] and further studied by Stevenson [28, 29], who showed optimality

without additional coarsening required in [4, 5]. These papers [4, 5, 28, 29] are restricted to

Laplace operator and rely on suitable marking by data oscillation and the interior node prop-

erty. Cascon et al. [10] succeeded in establishing quasi-optimality of the AFEM without both

the assumption of the interior node property and marking by data oscillation for the self-

adjoint second elliptic operator. Very recently, in [20,21] Hu et al. first analyzed the optimality

of adaptive conforming or nonconforming finite element methods without using the algorithm

that separates the error and the reduction of data oscillation.

However, for the convergence and optimality of AMFEM, the present works are carried

out only for Poisson equations: In [8], Carstensen and Hoppe proved the error reduction and

convergence for only the lowest-order Raviart-Thomas element. Chen et al. [12] showed the

convergence of the quasi-error and the optimality of the flux error while marking the data

oscillation. In [3,9,18], the convergence and optimality were analyzed for only the lowest-order

Raviart-Thomas element where the local refinement was performed by using simply either the

estimators or the data oscillation term.

Since the approximation of the mixed finite element methods is a saddle point of the cor-

responding energy, there is no orthogonality available, as is one of main difficulties for the

convergence and optimality of AMFEM. Since the stress variable is of interest in many appli-

cations, we especially concern the stress variable error. In this paper, our main contribution

is that we develop a novel technique and show, for more general elliptic problems and more

general mixed elements, the reduction property of the quasi-error (i.e., the saturation property),

the convergence of the quasi-error plus the divergence of the flux error, and the quasi-optimal

convergence rate of the total error with only the Dörfler Marking and without marking the

oscillation.

To summarize our main results, let {Tk, (Mk, Lk), pk, ηk}k≥0 be the sequence of the meshes,

a pair of finite element spaces with divMk = Lk, the approximation solutions, the estimators

produced by AMFEM in the k-th step. We prove in Section 5 that the quasi-error uniformly

reduces with a fixed rate between two successive meshes, up to an oscillation of data f , namely

E2
k+1 + γη2k+1 ≤ α2(E2

k + γη2k) + Cosc2(f, Tk),


