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Abstract

We discuss the convergence property of the Lanczos method for solving a complex

shifted Hermitian linear system (αI + H)x = f . By showing the colinear coefficient of

two system’s residuals, our convergence analysis reveals that under the condition Re(α) +

λmin(H) > 0, the method converges faster than that for the real shifted Hermitian linear

system (Re(α)I +H)x = f . Numerical experiments verify such convergence property.
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1. Introduction

We are interested in the iterative solution of the following complex shifted Hermitian linear

system

(αI +H)x = f, (1.1)

where H ∈ Cn×n is a Hermitian matrix, α is a complex number, called shift. Below, the linear

system (1.1) will be termed the CSH linear system. Such shifted linear system arises in a

variety of practical applications and has been discussed for many years; see [6-7,9,12,15]. The

fundamental work of Faber and Manteuffel [8] ensured that the Arnoldi recurrence simplifies,

yielding an optimal short-term recurrence. The issue was further explored and some theoretical

results have been derived in [10-11,16-17].

Our motivation to discuss (1.1) comes from the HSS iteration method [5]; see also [1-2,4].

We know that in the HSS iteration method, two shifted linear sub-systems as inner iteration

have to be solved per iteration step. In [14], a complex parameter α in the HSS iteration

method is employed and the HSS iteration method with a suitable nonreal parameter has a

smaller spectral radius of the iteration matrix than with a real parameter, even than with the

experimental optimal real parameter; see also the numerical experiment 2 in this paper. Since

a complex parameter α is employed in HSS, two linear sub-systems are the complex shifted

linear systems, not the real shifted linear systems. In such case, an interesting discussion on

the convergence rate of the shifted linear sub-system (i.e., the linear system (1.1)) in the HSS

iteration method is which is better, nonreal shift α, or real shift α.

In this paper, we discuss the convergence property of the Lanczos method for solving the

CSH linear system (1.1). By showing the colinear coefficient of two system’s residuals, our con-

vergence analysis reveals that under the condition Re(α)+λmin(H) > 0, the method converges
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for the CSH linear system (1.1) faster than that for the real shifted Hermitian system

(Re(α)I +H)x = f, (1.2)

which indicates that the method benefits from the imaginary part of a complex shift α when

solving the CSH linear system (1.1). It is known that for solving the system (1.2), the Lanczos

method is equivalent to the CG method since the coefficient matrix Re(α)I +H is Hermitian

positive definite under the condition Re(α)+λmin(H) > 0. This demonstrates that the Lanczos

method for the CSH linear system (1.1) has a faster convergence than the CG method for the

real shifted system (1.2). Numerical experiments verify such convergence property.

2. Lanczos Method and Its Convergence Property

In this section we briefly describe the direct version of the Lanczos method for solving the

CSH linear system (1.1), and then give an analysis on the convergence property of the method.

The main ingredient of the Lanczos method is the following Lanczos procedure applied to

the Hermitian matrix H with v1 = r0/‖r0‖2 as the starting vector:

For j = 1, · · · ,m, Do

wj = Hvj − βjvj−1, (if j = 1, let β1v0 = 0)

αj = (wj , vj),

wj = wj − αjvj ,

βj+1 = ‖wj‖, (if βj+1 = 0, stop.)

vj+1 = wj/βj+1.

EndDo

We refer to [18] for a detailed description about the Lanczos procedure. By setting Vm =

[v1, · · · , vm] and a symmetric tridiagonal matrix Tm = tridiag(βi, αi, βi+1), where βi, αi, βi+1

are the entries in the ith row of the matrix Tm, we have the shifted factorization

(αI +H)Vm = Vm(αI + Tm) + βm+1vm+1e
T
m, (2.1)

where Vm is an orthonormal basis of Km ≡ Km(H, v1). Note that the Krylov subspace keeps

shift invariance Km(H, v1) = Km(αI + H, v1). An approximation to the solution of (1.1) in

{x0}+Km can be written as xm = x0 + Vmym and its residual is

rm =f − (αI +H)xm

=r0 − Vm(αI + Tm)ym − βm+1vm+1e
T
mym. (2.2)

2.1. Lanczos method

By imposing the Galerkin condition rm⊥Km, we have

(αI + Tm)ym = V H
m r0 = βe1, (2.3)

where β = ‖r0‖. Thus the Lanczos solution of the CSH linear system (1.1) has the form

xm = x0 + Vm(αI + Tm)−1(βe1). Note that the shifted matrix αI + Tm is nonsingular under

the condition Re(α) +λmin(H) > 0 in the Theorem 2.2. Let ym = (η1, · · · , ηm)T . By (2.2), we

have the following result [18]; see also [13].


