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Abstract

In this paper, we formulate interface problem and Neumann elliptic boundary value

problem into a form of linear operator equations with self-adjoint positive definite op-

erators. We prove that in the discrete level the condition number of these operators is

independent of the mesh size. Therefore, given a prescribed error tolerance, the classical

conjugate gradient algorithm converges within a fixed number of iterations. The main

computation task at each iteration is to solve a Dirichlet Poisson boundary value problem

in a rectangular domain, which can be furnished with fast Poisson solver. The overall

computational complexity is essentially of linear scaling.
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1. Introduction

Self-adjoint elliptic problem can be reformulated as some Riesz representation in an ap-

propriate Hilbert space. To clarify this point, let us consider the Dirichlet boundary value

problem

−∇ · (β(x)∇u) + c(x)u = f, ∀x ∈ Ω,

u = 0, ∀x ∈ ∂Ω.

where Ω is a bounded domain of dimension d, and β(x), c(x) and f are given functions in Ω.

The associated variational problem is to find a distribution u ∈ H1
0 (Ω) such that

avar,Ω(u, v)
def
= (β(x)∇u,∇v)Ω + (c(x)u, v)Ω = (f, v)Ω, ∀ v ∈ H1

0 (Ω). (1.1)

Here (·, ·)Ω denotes the standard L2-inner product in the domain Ω. If the coefficient functions

β(x) and c(x) satisfy

0 < β0 ≤ β(x) ≤ β1 <∞, 0 ≤ c(x) ≤ cmax <∞, ∀x ∈ Ω, (1.2)

where β0, β1 and cmax are three constants, then the bilinear form avar,Ω(·, ·) defines an inner

product in H1
0 (Ω). The weak solution u is simply the Riesz representation of functional (f, v)Ω

with respect to the inner product avar,Ω(·, ·) in H
1
0 (Ω).
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There might be different inner products in a same vector space. In some cases, it is possible

to choose an equivalent reference inner product, such that the Riesz representation with respect

to this reference inner product is simpler. For example, the bilinear form

a0,Ω(u, v) = (∇u,∇v)Ω

gives an equivalent inner product as avar,Ω(·, ·) in H1
0 (Ω), but the Riesz representation with

respect to a0,Ω(·, ·) is simpler since this corresponds to a Dirichlet Poisson problem. By intro-

ducing the representation operator T as

avar,Ω(u, v) = a0,Ω(Tu, v), ∀u, v ∈ H1
0 (Ω),

the variational problem (1.1) can be rewritten into a form of operator equation

Tu = Rf . (1.3)

In the above, Rf denotes the Riesz representation of functional (f, v)Ω with respect to the

reference inner product a0,Ω(·, ·). Since a0,Ω(·, ·) is equivalent to avar,Ω(·, ·), T is both self-adjoint

and positive definite. Obviously, these properties are inherited automatically in the discrete

level, and the bounds of operator T are independent of the mesh size when a conforming

finite element method is used. This implies that the operator Eq. (1.3), thus the original

problem (1.1), can be solved by the Conjugate Gradient (CG) method within a fixed number of

iterations. At each iteration, one needs to determine a Riesz representation of some functional

with respect to the reference inner product. If this can be achieved with an essentially linear

scaling algorithm, such as the fast Poisson solver for the model problem when the domain is

rectangular, the overall scheme based on CG iterations is then essentially of linear scaling.

There are two ingredients involved in the above solution strategy. The first one is how to

formulate a self-adjoint elliptic problem into a Riesz representation problem. The second one is

how to determine an equivalent reference inner product such that the Riesz representation can

be derived with a linear scaling algorithm. Needless to say, these issues are coupled together

and problem dependent. We need to study them case by case.

Interface problem is ubiquitous in fluid dynamics and material science. It has been a hot

research subject for many years. The main difficulty for solving interface problem is due to

the fact that the solution is generally not smooth globally, thus the traditional finite difference

method (FDM) works poorly near the interface. As early as in 1977, Peskin [9] proposed the

immersed boundary (IB) method to handle the singular interface force in his blood flow model

for heart. His basic idea is to approximate the singular delta function with a smoother delta

series. In this way, the singular force is smeared out, and the standard FDM is then applicable.

The IB method has been extended in a great deal, and become very popular in the simulation

of interface-related problems. The readers are referred to [10] for more detailed information.

Despite the overwhelming success, the IB method is criticized due to the less satisfying

accuracy. This motivated Leveque and Li [5,6] to develop the immersed interface method (IIM).

The original version of IIM is formally second order accurate but results in a linear system with

non-symmetric coefficient matrix. This unpleasant fact has a subtle influence on the convergence

of their proposed iterative scheme [4]. Later, Li and Ito [7] proposed some maximum principle

preserving schemes to avoid this convergence problem. In more recent years, the finite element

version of IIM [2,3,13] has been studied more extensively. In comparison to the FDM, the finite

element method (FEM) has two remarkable features. First, the FEM can handle complicated


