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Abstract

We study numerical methods for time-dependent Hamilton-Jacobi equations with weak

Dirichlet boundary conditions. We first propose a new class of abstract monotone ap-

proximation schemes and get a convergence rate of 1/2 . Then, according to the abstract

convergence results, by newly constructing monotone finite volume approximations on inte-

rior and boundary points, we obtain convergent finite volume schemes for time-dependent

Hamilton-Jacobi equations with weak Dirichlet boundary conditions. Finally give some

numerical results.
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1. Introduction

Hamilton-Jacobi equations arise in many areas of applied mathematics, like optimal con-

trol, differential games, geometric optics, seismic wave propagation, obstacle navigation, path

planning and financial mathematics, among many others. They also appear when modeling

evolving interfaces in geometry, fluid mechanics, computer vision and materials science. In

general, these nonlinear first order PDEs cannot be solved analytically. The solutions usually

develop singularities in their derivatives even with smooth initial conditions. In these cases, the

solutions do not satisfy the equation in the classical sense. The weak solution that is usually

sought is called the viscosity solution [12]. Numerically, in general, one looks for a consistent

and monotone scheme to construct approximate viscosity solutions. In this paper, we study the

following Dirichlet type boundary value problem of Hamilton-Jacobi equation.





ut +H(x,Du) = 0, Ω× (0, T ]

u(x, 0) = u0(x), x ∈ Ω

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t ≤ T,

(1.1)

where Ω ∈ R
N is an open and bounded set and g(x, 0) = u0(x), x ∈ ∂Ω.
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The viscosity solution of Hamilton-Jacobi equation with weak Dirichlet boundary condition

(1.1) is defined as follows.

Definition 1.1. A locally bounded function u is a viscosity subsolution of (1.1) if and only if,

for any ϕ ∈ C1
(
Ω× [0, T ]

)
, if u∗ − ϕ has a local maximum at (x0, t0) ∈ Ω× (0, T ], then





ϕt(x0, t0) +H
(
x0, Dϕ(x0, t0)

)
≤ 0, x0 ∈ Ω

min
{
u∗(x0, t0)− g(x0, t0), ϕt(x0, t0) +H

(
x0, Dϕ(x0, t0)

)}
≤ 0, x0 ∈ ∂Ω

u∗(x, 0) ≤ u0(x), ∀x ∈ Ω.

(1.2)

A locally bounded function v is a viscosity supersolution of (1.1) if and only if, for any

ϕ ∈ C1
(
Ω× [0, T ]

)
, if v∗ − ϕ has a local minimum at (x0, t0) ∈ Ω× (0, T ], then





ϕt(x0, t0) +H
(
x0, Dϕ(x0, t0)

)
≥ 0, x0 ∈ Ω

max
{
v∗(x0, t0)− g(x0, t0), ϕt(x0, t0) +H

(
x0, Dϕ(x0, t0)

)}
≥ 0, x0 ∈ ∂Ω

v∗(x, 0) ≥ u0(x), ∀x ∈ Ω.

(1.3)

A function u is a viscosity solution of (1.1) if it is both a sub- and a supersolution. The

notations ·∗ and ·∗ refer to the upper and lower semicontinuous envelope, that is,

u∗(x, t) = lim sup
y∈Ω→x,s∈[0,T ]→t

u(y, s)andv∗(x, t) = lim inf
y∈Ω→x,s∈[0,T ]→t

v(y, s).

Existence and uniqueness(comparison principle) of regular(uniformly continuous or Lips-

chitz continuous) viscosity solutions of time-dependent Hamilton-Jacobi equations are obtained

essentially under two types of assumptions on Hamiltonian H , that is, Lipschitz continuity of

H or uniform coercivity of mapping p→ H(x, p) (see, e.g. [4,5,9,12,22]).

The problem of constructing convergent monotone approximation schemes for viscosity so-

lutions of Hamilton-Jacobi and fully nonlinear second order partial differential equations has

been considered by several authors (see e.g. [2,6,13,17-19,21]). In [11] obtained the first local a

posteriori error estimate for time-dependent Hamilton-Jacobi equations, which becomes a tool

for devising adaptive algorithms with error control. Especially in [22], a class of monotone nu-

merical schemes for Hamilton-Jacobi equations with Dirichlet boundary conditions was studied.

Up to our knowledge, it is the first time where proposed convergent approximation schemes for

time-dependent Hamilton-Jacobi equations with Dirichlet boundary conditions and moreover,

the problem of constructing numerically useful schemes has not been deeply studied. On the

other hand, as pointed out in [22], the problem of constructing numerically useful schemes by

using the abstract scheme proposed in the paper turned out to have some theoretical difficulties

because how to interpolate between the boundary and interior grid points is generally not obvi-

ous and therefore, finding a scheme with the right properties in the vicinity of the boundary is a

theoretical, but not computational problem. In Sect. 2 we provide a new class of abstract mono-

tone schemes for equation (1.1) and get a convergence rate of 1/2 under some usual assumptions

on the data and assumption on monotonicity of H at the boundary ∂Ω, that was proposed in

[22]. Based on the obtained abstract results, we can construct numerically useful convergent

schemes for time-dependent Hamilton-Jacobi equations with Dirichlet boundary conditions. In

Sect. 3 we propose and analyze numerical schemes on equation (1.1) by finite volume method.


