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Abstract

The orthogonal multi-matching pursuit (OMMP) is a natural extension of the orthogo-
nal matching pursuit (OMP). We denote the OMMP with the parameter M as OMMP (M)
where M > 1 is an integer. The main difference between OMP and OMMP (M) is that
OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the op-
timal atom set. In this paper, we study the performance of orthogonal multi-matching
pursuit under RIP. In particular, we show that, when the measurement matrix A satisfies
(25s,1/10)-RIP, OMMP (Mp) with My = 12 can recover s-sparse signals within s itera-
tions. We furthermore prove that OMMP (M) can recover s-sparse signals within O(s/M)
iterations for a large class of M.
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1. Introduction

1.1. Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a popular algorithm for the recovery of sparse signals
and it is also commonly used in compressed sensing. Let A be a matrix of size m x N and y
be a vector of size m. The aim of OMP is to find an approximate solution to the following
{o-minimization problem:

min |Ixflo st Ax=y,

where |x||op denotes the number of non-zero entries in x. In compressed sensing and the sparse
representation of signals, we often have m <« N. Throughout this paper, we suppose that the

C™*N are fo-normalized.

columns of the sampling matrix A €

To introduce the performance of OMP, we first recall the definition of the restricted isom-
etry property (RIP) [2] which is frequently used in the analysis of the recovering algorithm in
compressed sensing. We say that the signal x is s-sparse if ||x]|o < s and use 3, to denote the
set of s-sparse signals, i.e.,

Y, = {xeCV:|x|o < s}.
Following Candes and Tao, for 1 < s < N and d5 € [0,1), we say that the matrix A satisfies
(s,05)-RIP if
(1= 8s)lx[13 < [ Ax|13 < (1 + &) [1x]13 (1.1)
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holds for all s-sparse signals x. When there is no confusion, we may omit the subscript s in the
notation ds.

Theoretical analysis of OMP has concentrated primarily on two directions. The first one is to
study the condition for the matrix A under which OMP can recover s-sparse signals in exactly s
iterations. In this direction, one uses the coherence and RIP to analyze the performance of OMP.
In particular, Davenport and Wakin showed that, when the matrix A satisfies (s + 1, 3—\1/5)—RIP,
OMP can recover s-sparse signal in exactly s iterations [4]. The sufficient condition is improved
to (s+1, ﬁ)—RIP in [8,9] (see also [6,7,13] ). However, it was observed in [12], when the
matrix A satisfies (cgs, d¢ys)-RIP for some fixed constants ¢ > 1 and 0 < d.s < 1, that s
iterations of OMP is not enough to uniformly recover s-sparse signals, which implies that OMP
has to run for more than s iterations to uniformly recover the s-sparse signals. Hence, one
investigates the performance of OMP along the second line with allowing to OMP run more
than s iterations. For this case, it is possible that OMP add wrong atoms to the optimal atom
set, but one can identify the correct atoms by the least square. A main result in this direction
is presented by Zhang [15] with proving that when A satisfies (31s,1/3)-RIP OMP can recover
the s-sparse signal in at most 30s iterations.

The other type of greedy algorithms, which are based on OMP, have been proposed including
the regularized orthogonal matching pursuit (ROMP) [10], subspace pursuit (SP) [3], CoSaMP
[11], and many other variants. For each of these algorithms, it has been shown that, under a
natural RIP setting, they can recover the s-sparse signals within O(s) iterations.

1.2. Orthogonal Multi-matching Pursuit and Main Results

A more natural extension of OMP is the orthogonal multi-matching pursuit (OMMP) [7].
We denote the OMMP with the parameter M as OMMP (M) where M is an integer. Throughout
this paper, we assume that M € [1,s]. The main difference between OMP and OMMP (M) is
that OMMP (M) selects M atoms per iteration, while OMP only adds one atom to the optimal
atom set. The Algorithm 1 outlines the procedure of OMMP(M) with initial feature set A°.
In comparision with OMP, OMMP has fewer iterations and computational complexity [6]. We
note that, when M = 1, OMMP(M) is identical to OMP. OMMP is also studied in [6,8, 14]
under the names of KOMP, MOMP and gOMP, respectively. These results show that, when
RIP constant 6 = O(y/M/s), OMMP (M) can recover the s-sparse signal in s iterations.

The aim of this paper is to study the performance of OMMP(M) under a more natural
setting of RIP (the RIP constant is an absolute constant). Particularly, we also would like to
understand the relation between the number of iterations and the parameter M. So, we are
interested in the following questions:

Question 1 Does there exist an absolute constant My so that OMMP (My) can recover all the
s-sparse signals within s iterations?

Question 2 For 1 < M < s, can OMMP (M) recover the s-sparse signals within O(s/M)
iterations?

We try to answer the two questions for a general case where the measurement vector y is
corrupted by noise e € C™, i.e., y = Ax+e. We next state one of our main results which gives
an affirmative answer to Question 1. To state conveniently, throughout the rest of this paper,
we assume that C' is a constant only depending on the RIP constant of the matrix A.



