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Abstract

The orthogonal multi-matching pursuit (OMMP) is a natural extension of the orthogo-

nal matching pursuit (OMP). We denote the OMMP with the parameter M as OMMP(M)

where M ≥ 1 is an integer. The main difference between OMP and OMMP(M) is that

OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the op-

timal atom set. In this paper, we study the performance of orthogonal multi-matching

pursuit under RIP. In particular, we show that, when the measurement matrix A satisfies

(25s, 1/10)-RIP, OMMP(M0) with M0 = 12 can recover s-sparse signals within s itera-

tions. We furthermore prove that OMMP(M) can recover s-sparse signals within O(s/M)

iterations for a large class of M .
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1. Introduction

1.1. Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a popular algorithm for the recovery of sparse signals

and it is also commonly used in compressed sensing. Let A be a matrix of size m × N and y

be a vector of size m. The aim of OMP is to find an approximate solution to the following

ℓ0-minimization problem:

min
x∈CN

‖x‖0 s.t. Ax = y,

where ‖x‖0 denotes the number of non-zero entries in x. In compressed sensing and the sparse

representation of signals, we often have m ≪ N . Throughout this paper, we suppose that the

columns of the sampling matrix A ∈ C
m×N are ℓ2-normalized.

To introduce the performance of OMP, we first recall the definition of the restricted isom-

etry property (RIP) [2] which is frequently used in the analysis of the recovering algorithm in

compressed sensing. We say that the signal x is s-sparse if ‖x‖0 ≤ s and use Σs to denote the

set of s-sparse signals, i.e.,

Σs = {x ∈ C
N : ‖x‖0 ≤ s}.

Following Candès and Tao, for 1 ≤ s ≤ N and δs ∈ [0, 1), we say that the matrix A satisfies

(s, δs)-RIP if

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (1.1)
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holds for all s-sparse signals x. When there is no confusion, we may omit the subscript s in the

notation δs.

Theoretical analysis of OMP has concentrated primarily on two directions. The first one is to

study the condition for the matrix A under which OMP can recover s-sparse signals in exactly s

iterations. In this direction, one uses the coherence and RIP to analyze the performance of OMP.

In particular, Davenport and Wakin showed that, when the matrix A satisfies (s+1, 1
3
√
s
)-RIP,

OMP can recover s-sparse signal in exactly s iterations [4]. The sufficient condition is improved

to (s+ 1, 1√
s+1

)-RIP in [8, 9] (see also [6, 7, 13] ). However, it was observed in [12], when the

matrix A satisfies (c0s, δc0s)-RIP for some fixed constants c0 > 1 and 0 < δc0s < 1, that s

iterations of OMP is not enough to uniformly recover s-sparse signals, which implies that OMP

has to run for more than s iterations to uniformly recover the s-sparse signals. Hence, one

investigates the performance of OMP along the second line with allowing to OMP run more

than s iterations. For this case, it is possible that OMP add wrong atoms to the optimal atom

set, but one can identify the correct atoms by the least square. A main result in this direction

is presented by Zhang [15] with proving that when A satisfies (31s, 1/3)-RIP OMP can recover

the s-sparse signal in at most 30s iterations.

The other type of greedy algorithms, which are based on OMP, have been proposed including

the regularized orthogonal matching pursuit (ROMP) [10], subspace pursuit (SP) [3], CoSaMP

[11], and many other variants. For each of these algorithms, it has been shown that, under a

natural RIP setting, they can recover the s-sparse signals within O(s) iterations.

1.2. Orthogonal Multi-matching Pursuit and Main Results

A more natural extension of OMP is the orthogonal multi-matching pursuit (OMMP) [7].

We denote the OMMP with the parameterM as OMMP(M) whereM is an integer. Throughout

this paper, we assume that M ∈ [1, s]. The main difference between OMP and OMMP(M) is

that OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the optimal

atom set. The Algorithm 1 outlines the procedure of OMMP(M) with initial feature set Λ0.

In comparision with OMP, OMMP has fewer iterations and computational complexity [6]. We

note that, when M = 1, OMMP(M) is identical to OMP. OMMP is also studied in [6, 8, 14]

under the names of KOMP, MOMP and gOMP, respectively. These results show that, when

RIP constant δ = O(
√

M/s), OMMP(M) can recover the s-sparse signal in s iterations.

The aim of this paper is to study the performance of OMMP(M) under a more natural

setting of RIP (the RIP constant is an absolute constant). Particularly, we also would like to

understand the relation between the number of iterations and the parameter M . So, we are

interested in the following questions:

Question 1 Does there exist an absolute constant M0 so that OMMP(M0) can recover all the

s-sparse signals within s iterations?

Question 2 For 1 ≤ M ≤ s, can OMMP(M) recover the s-sparse signals within O(s/M)

iterations?

We try to answer the two questions for a general case where the measurement vector y is

corrupted by noise e ∈ Cm, i.e., y = Ax+ e. We next state one of our main results which gives

an affirmative answer to Question 1. To state conveniently, throughout the rest of this paper,

we assume that C is a constant only depending on the RIP constant of the matrix A.


