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Abstract

An efficient and accurate exponential wave integrator Fourier pseudospectral (EWI-FP)

method is proposed and analyzed for solving the symmetric regularized-long-wave (SRLW)

equation, which is used for modeling the weakly nonlinear ion acoustic and space-charge

waves. The numerical method here is based on a Gautschi-type exponential wave integrator

for temporal approximation and the Fourier pseudospectral method for spatial discretiza-

tion. The scheme is fully explicit and efficient due to the fast Fourier transform. Numerical

analysis of the proposed EWI-FP method is carried out and rigorous error estimates are

established without CFL-type condition by means of the mathematical induction. The

error bound shows that EWI-FP has second order accuracy in time and spectral accuracy

in space. Numerical results are reported to confirm the theoretical studies and indicate

that the error bound here is optimal.
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1. Introduction

The symmetric regularized long wave (SRLW) equation reads,

ut + ρx − uxxt +
1

2
(u2)x = 0, (1.1a)

ρt + ux = 0, x ∈ R, t > 0, (1.1b)

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), x ∈ R, (1.1c)

where u(x, t), ρ(x, t) are two real-valued functions, and u0, v0 are the given initial data. The

equation is widely used for modeling the weakly nonlinear ion acoustic and space-charge waves

[14, 23, 25, 26], and was first derived by C. E. Seyler and D. L. Fenstermacher in 1984 in [26]

when they were working on a weakly nonlinear analysis of the cold-electron plasma equations

appropriate for a strongly magnetized nonrelativistic electron beam such that the fluid motion is

constrained to one direction. By eliminating ρ from (1.1), the SRLW equation has an equivalent

single equation form as

utt − uxx − uxxtt +
1

2

(
u2
)
xt

= 0, x ∈ R, t > 0,
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which clearly shows that the SRLW equation is a wave type equation and due to this form,

(1.1) is usually referred in the literatures as an equation rather than a system. The SRLW

equation is symmetric in spatial and temporal derivatives, and is formally very similar to the

regularized long wave equation that describes shallow water waves and plasma drift waves [3,4].

In some special physics situations, a dissipative version of SRLW is also proposed and studied

in literature such as [28] and the references therein based on the SRLW equation (1.1).

Theoretically, the SRLW equation has gained many attentions. The local and global well-

posedness of the SRLW has been studied by B. Guo in [19] and L. Chen in [13], and has been

well-established by C. B. Brango in 2012 in [11]. The theoretical results therein indicate that

the solutions of the SRLW equation decay very fast to zero at the far field, i.e.

lim
x→∞

u(x, t) = lim
x→∞

ρ(x, t) = 0,

at a fixed t > 0. The SRLW equation (1.1) has various conservation laws [13, 26], such as the

energy

E(u, ρ) :=

∫
∞

−∞

(
u2(x, t) + u2

x(x, t) + ρ2(x, t)
)
dx ≡ E(u0, ρ0), (1.2)

and the two time invariants

I(u) =

∫
∞

−∞

u(x, t)dx ≡ I(u0), I(ρ) =

∫
∞

−∞

ρ(x, t)dx ≡ I(ρ0). (1.3)

The energy (1.2) indicates that the two components u and ρ in the SRLW equation stay in

different energy spaces. The SRLW equation (1.1) has also been remarkably pointed out to

admit the solitary wave solutions (or solitons) [13, 26] as

uS(x, t; v, x0) =
3(v2 − 1)

v
sech2

(√
v2 − 1

4v2
(x− vt+ x0)

)
, (1.4a)

ρS(x, t; v, x0) =
3(v2 − 1)

v2
sech2

(√
v2 − 1

4v2
(x− vt+ x0)

)
, x ∈ R, t ≥ 0, (1.4b)

where |v| > 1 is the velocity of the solitons and x0 ∈ R is a shift in space. The importance

of solitons in both theoretical studies of nonlinear wave equations and applications in many

physical areas is already well demonstrated in [1,2,15]. L. Chen established the stability theory

of these solitary waves (1.4) for SRLW equation in [13]. Integrability of the SRLW equation has

been investigated in [26], where SRLW equation has been proved to be a nonintegrable system.

Since the nonintegrable systems do not have the inverse scattering theory which is known as

the superposition for nonlinear equations [29], so the interactions of the solitary waves are

inelastic [12] and the dynamics of the SRLW equation are rather complicated analytical issues.

Thus numerical methods and simulations are very much needed for the studies of the SRLW

system.

For the numerical aspects, many finite difference (FD) time domain methods have been

proposed and analyzed in literature. T. Wang etc. considered some conservative FD schemes

that conserve the energy and the invariants in a discrete level in [31, 32]. However, these

conservative schemes are fully implicit and at each step a full nonlinear problem has to be solved

very accurately which is quite time-consuming. To improve the efficiency, some semi-implicit FD

methods are also proposed in [31] that make the scheme at each time level a linear tri-diagonal


