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Abstract

This paper aims to investigate sufficient conditions for the recovery of sparse signals via

the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel

sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm,

and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for

recovering the support of k-sparse signal is also presented. Generally, the computation for

the restricted isometry constant (RIC) in these sufficient conditions is typically difficult,

therefore we provide a new condition which is not only computable but also sufficient for

the exact recovery of all k-sparse signals.
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1. Introduction

Recovery of a sparse signal based on a small number of linear measurements is a fundamental

problem in compressed sensing [10]. We consider the following model:

y = Φβ + ϵ, (1.1)

where y ∈ Rm is an observation vector, Φ ∈ Rm×n is a known sensing matrix and ϵ ∈ Rm is

the measurement error vector. Suppose Φ = (ϕ1, ϕ2, . . . , ϕn) where ϕi denotes the ith column

of Φ. Throughout this paper we assume that the columns of Φ are normalized, i.e., ∥ϕi∥2 = 1

for i = 1, 2, . . . , n. The goal of compressed sensing is to reconstruct the unknown β ∈ Rn based

on y and Φ.

One of the most commonly used frameworks for the recovery of sparse signals is the Mutual

Coherence Property introduced by Donoho and Huo in [11]. For a vector β = (β(1), . . . , β(n)) ∈
Rn, the support of β is defined as supp(β) = {i : β(i) ̸= 0} and β is said to be k-sparse if

|supp(β)| ≤ k. The mutual coherence is defined by [11].

Definition 1.1. (Mutual Coherence [11]) The mutual coherence µ of a matrix Φ is defined as

µ := max
i ̸=j

|⟨ϕi, ϕj⟩|. (1.2)
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The validity of the OMP algorithm was investigated by Tropp [18] and Cai and Xu [4] in

the framework of Mutual Coherence. In the noiseless case, Tropp [18] showed that µ < 1
2k−1 is

a sufficient condition for the exact recovery of a k-sparse signal β, and Cai and Xu [4] showed

that this condition is in fact sharp. When the linear measurement is corrupted by noise, Cai

and Wang [2] considered two types of bounded noise. One is ℓ2 bounded noise, i.e., ∥ϵ∥2 ≤ η1,

for some constant η1 > 0. The other is ℓ∞ bounded noise, i.e., ∥ΦT ϵ∥∞ ≤ η2, for some constant

η2 > 0. In the ℓ2 bounded noise case, if the conditions

µ <
1

2k − 1
and |β(i)| > 2η1

1− (2k − 1)µ

(
i ∈ supp(β)

)
are satisfied, then the support of the k-sparse signal β can be recovered exactly via OMP. In

the ℓ∞ bounded noise case, a similar result was given.

In the framework of restricted isometry property (RIP), the validity of the OMP algorithm

was investigated by Mo et al. [14], Wu et al. [17] and Cheng et al. [8]. Their results were related

to the restricted isometry constant (RIC), that is defined by [7].

Definition 1.2. Let Φ ∈ Rm×n be a matrix, and let 1 ≤ k ≤ n be an integer. The restricted

isometry constant (RIC) of order k is defined as the smallest non-negative number δΦk such that

for all k-sparse vectors β ∈ Rn,

(1− δΦk )∥β∥22 ≤ ∥Φβ∥22 ≤ (1 + δΦk )∥β∥22.

In the noiseless case, Mo and Shen [14] showed that under the condition δΦk+1 < 1
1+

√
k
, OMP

can exactly recover the k-sparse signal. In the ℓ2 bounded noisy case, Wu et al. [17] showed that

the support of the k-sparse signal β can be recovered exactly via OMP under the conditions

δΦk+1 <
1

1 +
√
k

and |β(i)| >

(√
1 + δΦk+1 + 1

)
η1

1− (
√
k + 1)δΦk+1

(
i ∈ supp(β)

)
.

In the ℓ∞ bounded noise case, a similar result was given.

In this paper, some sufficient conditions based on the restricted orthogonality constant

(ROC) are given. The following definition can be seen, e.g., in [5, 15].

Definition 1.3. Let Φ ∈ Rm×n be a matrix, and let 1 ≤ k1, k2 ≤ n be two integers. The

restricted orthogonality constant (ROC) of order (k1, k2) is defined as the smallest non-negative

number θΦk1,k2
such that

|⟨Φβ1,Φβ2⟩| ≤ θΦk1,k2
∥β1∥2∥β2∥2,

for all k1-sparse vector β1 and k2-sparse vector β2 with disjoint supports. We set

θΦk1,0 = θΦ0,k2
= 0.

For a matrix Φ with normalized columns, the mutual coherence is a special case of the ROC,

i.e., µ = θΦ1,1. Roughly speaking, the RIC δΦk and ROC θΦk1,k2
measure how far subsets of

cardinality k of columns of Φ are to an orthonormal system. It is obvious that δΦk and θΦk1,k2

are increasing in each of their indices.

In this paper, we establish some more relaxed conditions for sparse signals recovery via

OMP. We show that the condition

δΦk +
√
kθΦ1,k < 1


