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Abstract

The paper deals with a numerical method for solving nonlinear integro-parabolic prob-

lems of Fredholm type. A monotone iterative method, based on the method of upper and

lower solutions, is constructed. This iterative method yields two sequences which converge

monotonically from above and below, respectively, to a solution of a nonlinear difference

scheme. This monotone convergence leads to an existence-uniqueness theorem. An analy-

sis of convergence rates of the monotone iterative method is given. Some basic techniques

for construction of initial upper and lower solutions are given, and numerical experiments

with two test problems are presented.
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1. Introduction

Integro-differential equations of Fredholm type arise from various fields of applied sciences

(see [4] for details). The purpose of this paper is to construct a numerical method for solving

nonlinear integro-parabolic equations of Fredholm type in the form

ut − Lu+ f(x, t, u) +

∫
ω

g0(x, s, t, u(s, t))ds = 0, (x, t) ∈ ω × (0, T ], (1.1)

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ],

u(x, 0) = ψ(x), x ∈ ω,

where ω is a connected bounded domain in Rκ (κ = 1, 2, . . .) with boundary ∂ω. The linear

differential operator L is given by

Lu =

κ∑
ν=1

∂

∂xν

(
D
∂u

∂xν

)
+

κ∑
ν=1

vν
∂u

∂xν
,

where D = D(x, t) > 0 and vν = vν(x, t), ν = 1, . . . , κ, are the diffusion and convection

coefficients, T is an arbitrary positive constant. The functions D, vν , ν = 1, . . . , κ, f , g0, h and

ψ are smooth in their respective domains.

To discretize problem (1.1), we use the implicit scheme for parabolic equations and ap-

proximate (1.1) by a nonlinear difference scheme. The purpose of this paper is to develop a
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monotone iterative method for solving the nonlinear difference scheme, including the existence

and uniqueness of a discrete solution, and error estimates of the iterative method. Our iterative

method is based on the method of upper and lower solutions and associated monotone iterates.

By using upper and lower solutions as two initial iterations, one can construct two monotone

sequences which converge monotonically from above and below, respectively, to a solution of

the nonlinear difference scheme.

Monotone iterative schemes for solving nonlinear parabolic equations were used in [1–3,5,6,8,

11]. In [7], a monotone iterative method for solving one dimensional nonlinear integro-parabolic

equations of Fredholm type is presented. In [7], the two important points in investigating the

monotone iterative method concerning a stopping criterion on each time level and estimates of

convergence rates, in the case of solving linear discrete systems on each time level inexactly,

were not given. In this paper, we investigate the monotone iterative method in the case when

on each time level nonlinear difference schemes are solved inexactly, and give an analysis of

convergence rates of the monotone iterative method.

The plan of the paper as follows. In Section 2, we formulate a nonlinear difference scheme

for the numerical solution of (1.1) by the implicit method for parabolic equations. A monotone

iterative method for the nonlinear difference scheme is given in Section 3, where the nonlinear

function g0 in (1.1) is considered nondecreasing in u. Existence and uniqueness of the solution

to the nonlinear difference scheme are established. An analysis of convergence rates of the

monotone iterative method is given. Convergence of the nonlinear difference scheme to the

nonlinear integro-parabolic problem (1.1) is established, and an error estimate is obtained. In

Section 4, some basic techniques for construction of initial upper and lower solutions are given,

and numerical experiments with two test problems are presented.

2. The Nonlinear Difference Scheme

We introduce meshes ωh, ωτ on the domains ω and [0, T ], respectively. The integral in

(1.1) is approximated by the finite sum g based on a composite Newton-Cotes quadrature rule

(see [10] for details)

g(p, tk, U) =
N∑
l=1

blg0(p, pl, tk, U(pl, tk)), (p, tk) ∈ ωh × ωτ , ωτ ≡ ωτ \ {0},

where bl, l = 1, . . . , N , are nonnegative weights, and N is the number of mesh points p ∈ ωh.

By using the implicit method for parabolic equations, we approximate the integro-parabolic

differential equation in (1.1) by the difference scheme

LU(p, tk) + f(p, tk, U) + g(p, tk, U)− τ−1
k U(p, tk−1) = 0, (p, tk) ∈ ωh × ωτ (2.1)

LU(p, tk) = LhU(p, tk) + τ−1
k U(p, tk),

where L is an approximation of the differential operator L from (1.1). When no confusion

arises, we write f(p, tk, U(p, tk)) = f(p, tk, U), g(p, tk, U(p, tk)) = g(p, tk, U). The boundary

and initial conditions are approximated by

U(p, tk) = h(p, tk), (p, tk) ∈ ∂ωh × ωτ , U(p, 0) = ψ(p), p ∈ ωh,


