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Abstract

In this paper, we further generalize the technique for constructing the normal (or pos-
itive definite) and skew-Hermitian splitting iteration method for solving large sparse non-
Hermitian positive definite system of linear equations. By introducing a new splitting, we
establish a class of efficient iteration methods, called positive definite and semi-definite
splitting (PPS) methods, and prove that the sequence produced by the PPS method con-
verges unconditionally to the unique solution of the system. Moreover, we propose two
kinds of typical practical choices of the PPS method and study the upper bound of the
spectral radius of the iteration matrix. In addition, we show the optimal parameters such
that the spectral radius achieves the minimum under certain conditions. Finally, some
numerical examples are given to demonstrate the effectiveness of the considered methods.
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1. Introduction
Many problems in scientific computing give rise to a system of linear equations
Ar=b, AeC™™™ and z, beC" (1.1)

with A being a large sparse non-Hermitian but positive definite matrix.

We call a matrix B positive definite (or positive semi-definite), if B + B* is Hermitian
positive definite (or positive semi-definite), i.e., for all 0 # z € C", z*(B + B*)x > 0 (or
z*(B + B*)x > 0), where B* denotes the complex conjugate transpose of the B. Let D =
diag(ai1,asz, - ,an,) be the diagonal part of A and e; = (0,---,0,1,0,---,0). Since the
coefficient matrix A is positive definite, we have ef(A + A*)e; = a;; + @z > 0. This shows that
D is positive definite.

The linear system has many important practical applications, such as diffuse optical tomog-
raphy, molecular scattering, lattice quantum chromodynamics (see, e.g., [1,7,8,22,24,38,39,41]).
Many researchers have been devoted themselves to the numerical solution of (1.1) (see e.g.,
[2-4,10,11,18,21,25,27,28,36,37,40,42,45-47] and the references therein) and proposed kinds
of available iteration methods for solving the system (1.1), in which splitting iteration methods
(see e.g., [9,13-17,19,29-31,35,44]) and Krylov subspace methods (see e.g., [5,20,23,26,32,43])
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attract a lot of attention. In [16], the authors presented a Hermitian and skew-Hermitian s-
plitting (HSS) iteration method for solving (1.1) and showed that the HSS method converges
unconditionally to the unique solution of the system. Then many researchers focused on the
HSS method and proposed kinds of iterations method based on Hermitian and skew-Hermitian
splitting (see e.g., [6,9,12,13,17]). In recent years, other kinds of splitting iteration methods
have also been studied (see e.g., [14,15,33-35,44]). Normal and skew-Hermitian splitting (NSS)
iteration methods for solving large sparse non-Hermitian positive definite linear system was
studied in [15]. Based on block triangular and skew-Hermitian splitting, a class of iteration
methods for solving positive-definite linear systems was established in [14]. Krukier et. al pro-
posed the generalized skew-Hermitian triangular splitting iteration methods to solve (1.1) and
applied the methods to solve the saddle-point linear systems (see [34]). In this work, we further
generalize the technique for constructing the normal (or positive definite) and skew-Hermitian
splitting iteration method for solving (1.1).

Throughout this paper, we use the following notations: C™*™ is the set of m x n complex
matrices and C™ = C™*!. We use C and R to denote the set of complex numbers and real
numbers, respectively. For any a € C, we write Re(a) and Im(a) to denote the real and
imaginary parts of a. For B € C"*", we write B~1, || Bl|2, A(B) and p(B) to denote the the
inverse, 2-norm, the spectrum and the spectral radius of the matrix B, respectively. I denotes
the identity matrix of size implied by context. i = v/—1 denotes the imaginary unit.

The organization of this paper is as follows. In Section 2, we present the positive definite
and semi-definite splitting methods for solving non-hermitian positive definite linear systems
and study the convergence properties of the PPS iteration. In Section 3, we establish two kinds
of typical practical choices of the PPS method and study the upper bound of the spectral radius
of iteration matrix. Numerical experiments are presented in Section 4 to show the effectiveness
of our methods.

2. The Positive Definite and Semi-definite Splitting Method

In this section, we study efficient iterative methods for solving (1.1) based on the positive
definite and semi-definite splitting (PPS for short) of the coefficient matrix A, and establish
the convergence analysis of the new methods. For this purpose, we split A into positive-definite
and positive semi-definite parts as follows:

A=M+N, (2.1)

where M is a positive-definite matrix and N is a positive semi-definite matrix. Then it is easy
to see that
A=al+M—(al —N)=al + N — (ol — M).

This implies that the system (1.1) can be reformulated equivalently as:
(al + M)z = (ol — N)xz + b,

or
(al + N)x = (ol — M)z + .

By the two above fixed point equations, we can get the following iteration method:

(kt3) — — (k)
{(aI+M)g; 8 = (al — N)z® + b, 22)

(al + N)z++D) = (oI — M)zk+2) 4+ b,



