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Abstract

In this paper, we investigate a new pseudospectral method for mixed boundary value

problems defined on quadrilaterals. We introduce a new Legendre-Gauss type interpolation

and establish the basic approximation results, which play important roles in pseudospectral

method for partial differential equations defined on quadrilaterals. We propose pseudospec-

tral method for two model problems and prove their spectral accuracy. Numerical results

demonstrate their high efficiency. The approximation results developed in this paper are

also applicable to other problems defined on complex domains.
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1. Introduction

The spectral method has gained increasing popularity in scientific computations, see [1-

10,19] and the references therein. The standard spectral method is available for periodic

problems and problems defined on rectangular domains. Some authors developed the spec-

tral method for triangles, quadrilaterals and polygons, see, e.g., [1, 2, 12, 15, 21]. In actual

computations, the pseudospectral method is more preferable oftentimes, with which we only

need to evaluate unknown functions at interpolation nodes and can deal with nonlinear terms

easily. Whereas, it is not an easy job for problems defined on quadrilaterals. The main diffi-

culty is how to design the proper basis functions, the interpolations and the related numerical

quadratures on quadrilaterals. For rectangular domains, it is natural to take the products of

weights of one-dimensional numerical quadratures as the weights of two-dimensional numerical

quadratures, so that the two-dimensional numerical quadratures also keep the exactness. But,

in the pseudospectral method for quadrilaterals, the basis functions are not polynomials gen-

erally, and so such exactness is no longer valid for them. Moreover, even if the exactness holds

for the basis functions, it might still fail for their derivatives, since the derivatives usually do

not belong to the same finite-dimensional sets as the basis functions themselves. Therefore, the

discrete inner products and numerical quadratures appearing in the pseudospectral schemes are

not equivalent to the corresponding continuous terms involved in the weak forms of considered
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problems. This fact often destroys the spectral accuracy. Recently, the authors [13] provid-

ed a pseudospectral method for quadrilaterals. But, it was successfully applied to numerical

solutions of parabolic equations on quadrilaterals.

In this paper, we investigate the pseudospectral method for mixed boundary value problems

defined on quadrilaterals. The next section is for preliminaries. In Sections 3 and 4, we

introduce the new orthogonal approximation and the new Legendre-Gauss type interpolation on

quadrilaterals respectively. We establish the basic approximation results, which play important

roles in the pseudospectral method for partial differential equations defined on quadrilaterals.

In Section 5, we provide pseudospectral schemes for two model problems with the convergence

analysis and some numerical results indicating their high accuracy. The final section is for

concluding remarks.

2. Preliminaries

Let Ω be a convex quadrilateral with the edges Lj , the vertices Qj = (xj , yj), and the angles

θj , 1 ≤ j ≤ 4, see Figure 1. We make the variable transformation:

x = a0 + a1ξ + a2η + a3ξη, y = b0 + b1ξ + b2η + b3ξη (2.1)

where
a0 = 1

4 (x1 + x2 + x3 + x4), b0 = 1
4 (y1 + y2 + y3 + y4),

a1 = 1
4 (−x1 + x2 + x3 − x4), b1 = 1

4 (−y1 + y2 + y3 − y4),

a2 = 1
4 (−x1 − x2 + x3 + x4), b2 = 1

4 (−y1 − y2 + y3 + y4),

a3 = 1
4 (x1 − x2 + x3 − x4), b3 = 1

4 (y1 − y2 + y3 − y4).

(2.2)

Then Ω is changed to the reference square S = {(ξ, η) | − 1 < ξ, η < 1}.
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Fig. 2.1. Quadrilateral Ω.

For simplicity, we denote
∂x

∂ξ
by ∂ξx, etc.. The Jacobi matrix of transformation (2.1) is

MΩ =

(
∂ξx ∂ξy

∂ηx ∂ηy

)
=

(
a1 + a3η b1 + b3η

a2 + a3ξ b2 + b3ξ

)
.

Its Jacobian determinant is

JΩ(ξ, η) =

∣∣∣∣ a1 + a3η b1 + b3η

a2 + a3ξ b2 + b3ξ

∣∣∣∣ = d0 + d1ξ + d2η (2.3)

where

d0 = a1b2 − a2b1, d1 = a1b3 − a3b1, d2 = a3b2 − a2b3. (2.4)


