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Abstract

In this paper, we consider the low rank approximation solution of a generalized Lya-

punov equation which arises in the bilinear model reduction. By using the variation prin-

ciple, the low rank approximation solution problem is transformed into an unconstrained

optimization problem, and then we use the nonlinear conjugate gradient method with ex-

act line search to solve the equivalent unconstrained optimization problem. Finally, some

numerical examples are presented to illustrate the effectiveness of the proposed methods.
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1. Introduction

Denoted by Rn×n be the set of n×n real matrices, SRn×n be the set of n×n real symmetric

matrices, SRn×n
+ be the set of n × n real symmetric positive definite matrices. We write

B > 0 (B ≥ 0) if the matrix B is positive definite (semidefinite). The symbol BT stands for

the transpose of the matrix B, and the symbol ⊗ stands for the Kronecker product. For the n×n

matrix B = (b1, b2, · · · , bn) = (bij), [B]ij stands for the element of the ith row and jth column,

that is, [B]ij = bij , and vec(B) stands for a vector defined by vec(B) = (bT1 , b
T
2 , · · · , bTn )T . The

symbols rank(B) and tr(B) stand for the rank and trace of the matrix B, respectively. We use

λ1(B) and λn(B) to denote the maximal and minimal eigenvalues of an n×n symmetric matrix

B, respectively. We use ∥B∥F to denote the Frobenius norm of a matrix B.

In this paper, we consider the low rank approximation solution of the generalized Lyapunov

equation

AX +XAT +
m∑
j=1

NjXNT
j +Q = 0, (1.1)
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where A,N1, N2, · · · , Nm ∈ Rn×n, Q is an n× n symmetric semidefinite matrix, and

In ⊗A+A⊗ In +
m∑
j=1

Nj ⊗Nj ∈ SRn2×n2

+

The low rank approximation solution of (1.1) arises in bilinear model reduction, which can be

stated as follows (see [4,11,38] for more details). Consider the following bilinear control systems

ẋ(t) = Ax(t) +
m∑
j=1

Njx(t)uj(t) +Bu(t), (1.2a)

yt = Cx(t), x(0) = x0, (1.2b)

where A,Nj ∈ Rn×n, B ∈ Rn×m and C ∈ Rk×n. Let

P1(t1) = eAt1B, (1.3a)

Pi(t1, t2, · · · , ti) = eAti [N1Pi−1, · · · , NmPi−1], i = 2, 3, · · · . (1.3b)

Then the reachability Gramian

P =
∞∑
i=1

∫ ∞

0

· · ·
∫ ∞

0

PiP
T
i dt1 · · · dti

of (1.2) satisfies (1.1) with Q = BBT .

In the last few years there has been a constantly increasing interest in developing effective

numerical methods for the standard Lyapunov equation (i.e. Eq. (1.1) with m = 0). The

numerical methods can be generally separated into two classes. The first class consists of direct

method, such as the Bartels-Stewart method [3] and the Hammarling method [20]. The second

class is the iterative method, such as Krylov subspace method [22], ADI method [26], matrix

sign function method [6], Smith’s method [34], block successive overrelaxation method [35] and

the matrix splitting methods [14]. In particular, Bai [2] presented a HSS iterative method for

solving large sparse continuous Sylvester equations with non-Hermitian and positive definite

(semidefinite) matrices. Motivated by the classical conjugate direction method for Hermitian

positive definite linear systems, Deng, Bai and Gao [7] constructed orthogonal direction methods

for solving two classes of linear matrix equations. Some other matrix equations were also studied

in [8,9,15,29]. However, when m > 0, the theory and numerical methods for the generalized

Lyapunov equation (1.1) are fewer than the case m = 0, due to the complicated structure. By

means of the linear operator theory and spectral analysis, Damm [10] and Zhang-Chen [37] gave

some sufficient conditions for the existence of a positive (semi)definite solution of Eq. (1.1),

but how to verify these conditions is difficult. By using the vectorizing operator and Kronecker

product, Huang [18,19] transformed Eq. (1.1) into a system of linear equations and derived

some sufficient conditions for the existence of a symmetric solution. A parameter iterative

method was constructed to compute the symmetric solution, but how to choose the optimal

parameter is unknown.

Recent interests on the Lyapunov equation are directed more towards large and sparse

coefficients matrices A, Nj and Q = BBT with very low rank, where B has only a few columns.

In this case, the standard methods are often too expensive to be practical, and some low

rank iterative methods become more viable choices. Common ones are based on the ADI or

Smith method (see [12,25,29]), on Krylov subspace techniques (see [15,25,26]), and on low rank


