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Abstract

In this paper, a modified Hermitian and skew-Hermitian splitting (MHSS) iteration

method for solving the complex linear matrix equation AXB = C has been presented.

As the theoretical analysis shows, the MHSS iteration method will converge under cer-

tain conditions. Each iteration in this method requires the solution of four linear matrix

equations with real symmetric positive definite coefficient matrices, although the original

coefficient matrices are complex and non-Hermitian. In addition, the optimal parameter

of the new iteration method is proposed. Numerical results show that MHSS iteration

method is efficient and robust.
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1. Introduction

In this paper, we consider the following linear matrix equation:

AXB = C, (1.1)

where A ∈ Cn×n, B ∈ Cn×n and C ∈ Cn×n are given matrices. Assume that A, B and C are

large and sparse matrices, and let A = W + iT , B = U + iV , where W,T,U, V ∈ Rn×n are real

symmetric matrices, and T, V are positive definite, W,U are positive semidefinite. Then the

matrix A is non-Hermitian. As a special case of the coupled Sylvester equations

n∑
j=1

AijXjBij = Ci (i = 1, · · · ,m),

the complex symmetric linear matrix equation (1.1) arises in many problems of scientific compu-

tation and engineering applications. Its exact solution problems and the least-squares problems

have been discussed in the areas of stability of linear systems [28,29], power systems [35], linear

algebra [30], FFT-based solution of certain time-dependent PDEs [22]. Generally speaking,
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the sizes of A and B are usually very large and how to effectively solve this kind of equations

involving literally hundreds or thousands of variables is under research.

As well known, the complex linear matrix equation (1.1) is mathematically equivalent to

the following linear systems of equations

Ax = f, (1.2)

where A = BT ⊗A, and the vectors x and f contain the concatenated columns of the matrices

X and C, respectively, with ⊗ being the Kronecker product and BT representing the transpose

of the matrix B [21]. However, it is a numerically poor way to determine the solution X of

the complex linear matrix equation (1.1), as numerically solving the linear system of equations

(1.2) is quite costly and ill-conditioned.

With the application of Kronecker products, some algorithms have been proposed to com-

pute the solution of the linear matrix equation (1.1), see, e.g., [4,5,23,24,37,41,48,49]. Moreover,

some efficient methods have been presented to solve the linear and nonlinear matrix equation-

s [36, 44, 45]. The HSS iteration method for non-Hermitian positive definite linear systems of

equations was firstly proposed by Bai, et al. in [3], and then it was extended to other equations

and conditions. We refer to [7–14, 16–20, 33, 34, 43] and the references therein. However, using

the idea of HSS iteration method to solve matrix equation has not been investigated except for

the work in [2,40,42,46,50,51]. In [6], Bai, et al. presented a modified HSS iteration method for

complex symmetric linear systems of equations. In this paper, we used the similar idea for solv-

ing complex symmetric linear matrix equation AXB = C and presented a modified Hermitian

and skew-Hermitian splitting (MHSS) iteration method. The linear matrix equation AXB = C

is solved iteratively without using the Kronecker product, but adopt a new inner-outer iteration

strategy. Although we use an inner-outer iteration strategy, the new HSS iteration method still

preserves the convergence property of the “one-level” HSS iteration method without showing

the effect of the inner iteration. In the MHSS iteration method, only two linear sub-systems

with real and symmetric positive definite coefficient matrices need to be solved at each step

instead of the solution of the shifted skew-Hermitian sub-systems of the linear matrix equa-

tions with coefficient matrices αI + iT and βI + iV . Besides, the computation of X(k+ 1
2 ) only

needs real arithmetic, then the computation of the iterates X(k+1) requires a modest amount

of complex arithmetic due to the fact that the right hand side in the corresponding system is

complex. Both can be efficiently computed either exactly by a sparse Cholesky factorization or

inexactly by a preconditioned conjugate gradient scheme.

Moreover, as the theoretical shows, the MHSS iteration method will converge to the unique

solution of the linear matrix equation (1.1) under certain conditions. Theoretical analysis also

shows that an upper bound on the contraction factor of the MHSS iteration method depends

on the spectra of the Hermitian parts W and U , but is independent on the the spectra of the

matrices T, V,A and B, or on the eigenvectors of the matrices W , U , V , T , A and B. We can

also give the optimal parameters which minimize the upper bound of the contraction factor.

In the remainder of this paper, a matrix sequence {Y (k)}∞k=0 ⊆ Cn×n is said to be convergent

to a matrix Y ∈ Cn×n, if the corresponding vector sequence {y(k)}∞k=0 ⊆ Cn2

is convergent to the

corresponding vector y ∈ Cn2

, where the vectors y(k) and y contain the concatenated columns

of the matrices Y (k) and Y , respectively. If {Y (k)}∞k=0 is convergent, then its convergence factor

and convergence rate are defined as those of {y(k)}∞k=0, correspondingly. In addition, we use

λ(W ), ∥W∥2 and ∥W∥F to denote the spectrum, the spectral norm, and the Frobenius norm

of the matrix W ∈ Cn×n, respectively. Note that ∥ • ∥2 is also used to represent the 2-norm of


