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Abstract

This paper proposes and analyzes a class of robust globally divergence-free weak Galerkin

(WG) finite element methods for Stokes equations. The new methods use the Pk/Pk−1

(k ≥ 1) discontinuous finite element combination for velocity and pressure in the interior

of elements, and piecewise Pl/Pk (l = k − 1, k) for the trace approximations of the ve-

locity and pressure on the inter-element boundaries. Our methods not only yield globally

divergence-free velocity solutions, but also have uniform error estimates with respect to

the Reynolds number. Numerical experiments are provided to show the robustness of the

proposed methods.
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1. Introduction

Let Ω ⊂ Rd be a polygonal if d = 2 or be a Lipschitz polyhedral domain if d = 3. We

consider the following Stokes equations: seek the velocity u and the pressure p such that
− ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω.

(1.1)

Here ν = Re−1 > 0 is the fluid viscosity coefficient with Re denoting the Reynolds number,

f ∈ [L2(Ω)]d is the given body force, and the boundary data g ∈ [H1/2(∂Ω)]d satisfies∫
∂Ω

g · n = 0, (1.2)

where n is the outward unit normal vector to ∂Ω.

It is well-known that a Galerkin mixed method for (1.1) requires the pair of finite element

spaces for the velocity and pressure to satisfy an inf-sup stability condition (see, e.g., [1, 4, 10,

57,58,61] and books [12,31,33,41–43]).

Unfortunately, the inf-sup constraint rules out the use of low-order and equal-order elements.

In order to circumvent the inf-sup difficulty, many stabilization techniques have been developed

to obtain stabilized finite element methods, e.g., Galerkin least-square methods [5, 7, 17, 37],

pressure projection methods [8,14,18], pressure gradient projection methods [13,30], and local

projection stabilized methods [6, 39,51].

* Received November 5, 2015 / Revised version received April 9, 2016 / Accepted April 15, 2016 /

Published online September 14, 2016 /



550 G. CHEN, M.F. FENG AND X.P. XIE

Mass conservation is another issue in the numerical solution of incompressible fluid flows.

Finite element methods with poor mass conservation, namely not satisfying the incompressibil-

ity constraint (at least locally), may lead to undesired instabilities for more complex problems

than (1.1) [3, 9, 40,48,49,53].

In literature there are some finite element methods for (1.1) that are inf-sup stable and

yield (locally) divergence-free velocity approximations. For stable and divergence-free Stokes

elements of conforming Pk−Pk−1 types (continuous piecewise Pk for velocity and discontinuous

piecewise Pk−1 for pressure), we refer to [56] for a 2D family with any k ≥ 4 on meshes

that do not contain singular vertices, to [2] for a 2D element with k = 1 on macro square

meshes, to [54] for 2D finite elements with k = 2, 3 on macro triangular meshes, and to [68].

In [44] a family of conforming and divergence-free Stokes elements were proposed on general

triangular meshes, where the lowest order case consists of enriched piecewise linear polynomials

for the velocity and piecewise constant polynomials for the pressure. For stable and locally

divergence-free Stokes elements of nonconforming types, we refer to [32] for the Crouzeix-Raviart

element method with piecewise constant approximation for the pressure, and to [50, 60, 67]

for finite element approximations based on modifying H(div)-conforming elements on general

triangular/tetrahedral meshes. We also refer to [45, 69, 70] for several stable and (locally)

divergence-free Stokes elements on rectangular grids.

In recent years the discontinuous Galerkin (DG) method has become increasingly popular

due to its attractive features like local conservation of physical quantities and flexibility in

meshing. It has been shown in [25, 62] that DG methods using H(div)-conforming elements

lead to divergence-free approximations. As pointed out in [35], an inconvenient feature of

the DG method is that it may require the penalization parameter to be “sufficiently” large

(practically unknown) for stability. This inconvenience was avoided by local discontinuous

Galerkin (LDG) methods [15, 16, 24, 29], which have an additional property that fluxes can be

eliminated locally, and hybridizable discontinuous Galerkin (HDG) methods [19–23,26–28,52],

which introduce the numerical trace as an unknown and possess the property of local elimination

of unknowns defined in the interior of elements. However, the LDG/HDG methods enforce the

incompressibility by using a postprocessing procedure [19,23,26–28,52] or by using element-wise

divergence-free spaces for velocity [15,20,21]. It has been shown in [26] that globally divergence-

free velocity approximations can be obtained when the normal stabilization function τn goes to

infinity in the HDG methods proposed in [23,52].

In [65] a family of weak Galerkin (WG) methods were proposed for the Stokes equations,

where the Pk/Pk−1 (k ≥ 1) discontinuous finite element combination is used for the velocity

and pressure, and piecewise Pk−1 element for the velocity on the interface of the finite element

partition. We refer to [66] for another WG scheme for the Stokes model. We note that the

velocity approximations in [65,66] are not (locally) divergence-free. The WG method was first

proposed and analyzed to solve second-order elliptic problems [63,64]. It is designed by using a

weakly defined gradient operator over functions with discontinuity, and then allows the use of

totally discontinuous functions in the finite element procedure. Similar to the LDG and HDG

methods, the WG method is of the property of local elimination of unknowns defined in the

interior of elements. The WG method is closely related to the HDG method in the following

sense. On one hand, as shown in Remark 2.1 of [47], the WG method for diffusion equations

may fall into the HDG framework if introducing the discrete weak gradient as an independent

variable. On the other hand, an HDG scheme may be rewritten as a WG scheme by defining

some special discrete weak gradient/divergence (cf. (7.9) and (7.10)).


