
Journal of Computational Mathematics

Vol.35, No.4, 2017, 383–396.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1606-m2015-0452

EXTRAPUSH FOR CONVEX SMOOTH DECENTRALIZED
OPTIMIZATION OVER DIRECTED NETWORKS*

Jinshan Zeng

College of Computer Information Engineering, Jiangxi Normal University, Nanchang,

Jiangxi 330022, China

Email: jinshanzeng@jxnu.edu.cn

Wotao Yin

Department of Mathematics, University of California, Los Angeles, CA 90095, USA

Email: wotaoyin@math.ucla.edu

Abstract

In this note, we extend the algorithms Extra [13] and subgradient-push [10] to a new

algorithm ExtraPush for consensus optimization with convex differentiable objective func-

tions over a directed network. When the stationary distribution of the network can be

computed in advance, we propose a simplified algorithm called Normalized ExtraPush.

Just like Extra, both ExtraPush and Normalized ExtraPush can iterate with a fixed step

size. But unlike Extra, they can take a column-stochastic mixing matrix, which is not

necessarily doubly stochastic. Therefore, they remove the undirected-network restriction

of Extra. Subgradient-push, while also works for directed networks, is slower on the same

type of problem because it must use a sequence of diminishing step sizes.

We present preliminary analysis for ExtraPush under a bounded sequence assump-

tion. For Normalized ExtraPush, we show that it naturally produces a bounded, linearly

convergent sequence provided that the objective function is strongly convex.

In our numerical experiments, ExtraPush and Normalized ExtraPush performed simi-

larly well. They are significantly faster than subgradient-push, even when we hand-optimize

the step sizes for the latter.

Mathematics subject classification: 90C25, 90C30.

Key words: Decentralized optimization, Directed graph, Consensus, Non-doubly stochas-

tic, Extra.

1. Introduction

We consider the following consensus optimization problem defined on a directed, strongly

connected network of n agents:

minimize
x∈Rp

f(x) ,
n∑

i=1

fi(x), (1.1)

where fi is a proper, closed, convex, differentiable function only known to the agent i.

The model (1.1) finds applications in decentralized averaging, learning, estimation, and

control. For a stationary network with bi-directional communication, the existing algorithms

include the (sub)gradient methods [2, 5, 8, 9, 13, 19], and the primal-dual domain methods such

as the decentralized alternating direction method of multipliers (DADMM) [11, 12].

* Received November 12, 2015 / Revised version received June 2, 2016 / Accepted June 27, 2016 /

Published online June 1, 2017 /



384 J.S. ZENG AND W.T. YIN

This note focuses on a directed network (with directional communication), where the re-

search of decentralized optimization is pioneered by the works [15–17]. When communication is

bi-directional, algorithms can use a symmetric and doubly-stochastic mixing matrix to obtain

a consensual solution; however, once the communication is directional, the mixing matrix be-

comes generally asymmetric and only column-stochastic. Also consider the setting where each

agent broadcasts its information to its neighbors, yet an agent may not receive the information

from a neighbor. An agent can weigh its information (both from itself and received from its

neighbors) so that the total weights add up to 1, but an agent cannot ensure that its broadcast-

ed information receives weights that precisely add up to exactly 1. Therefore, only each column

of the mixing matrix sums to 1. In the column-stochastic setting, the push-sum protocol [6]

can be used to obtain a stationary distribution for the mixing matrix.

In the symmetric and doubly-stochastic setting, if the objective is Lipschitz-differentiable,

the gradient-based algorithm Extra [13] converges at the rate of O(1/t), where t is the iteration

number. In the column-stochastic setting, the best rate is O(ln t/
√
t) from the subgradient-

based algorithm [10]. We address the open question of how to take advantage of the gradient of

a Lipschitz-differentiable objective. We make an attempt in this note to combine ideas in [10,13]

and present our preliminary results.

Specifically, we propose ExtraPush, which is a two-step iteration like Extra and incorporates

the push-sum protocol. At each iteration, the Extra variables are approximately normalized

by the current push-sum variables. When the stationary distribution of the network can be

easily computed, we propose to first apply the push-sum protocol to obtain the stationary

distribution and then run the two-step iteration Normalized ExtraPush. At each iteration, its

running variables are normalized by the stationary distribution.

Our algorithms are essentially the same as found in the recent work by Xi and Khan [18].

They attempted to prove convergence for a strongly convex objective function. They noticed

that a certain matrix that is important to the analysis (as a part of their convergence metric)

is positive semi-definite. Our analysis also uses this property. However, their analysis breaks

down due to incorrect assumptions. More specifically, each function fi is assumed in [18] to be

strongly convex and also has a bounded and Lipschitz gradient (i.e., its gradient is bounded

and Lipschitz continuous). However, no function can satisfy these assumptions simultaneously

since gradients of a strongly convex are strictly increasing and unbounded.

It is worth noting that our algorithm can be applied to a time-varying directed network after

a straightforward modification; our convergence proof, however, will need a significant change.

The rest of this note is organized as follows. Section 2 introduces the problem setup and

preliminaries. Section 3 develops ExtraPush and Normalized ExtraPush. Section 4 establish-

es the optimality conditions for ExtraPush and shows its convergence under the boundedness

assumption. Section 5 assumes that the objective is strongly convex and shows that Normal-

ized ExtraPush produces a bounded sequence that converges linearly. Section 6 presents our

numerical simulation results. We conclude this paper in Section 7.

Notation: Let In denote an identity matrix with the size n× n, and 1n×p ∈ Rn×p denote

the matrix with all entries equal to 1. We also use 1n ∈ Rn as a vector of all 1’s. For any

vector x, we let xi denote its ith component and diag(x) denote the diagonal matrix generated

by x. For any matrix X , XT denotes its transpose, Xij denotes its (i, j)th component, and

‖X‖ ,
√

〈X,X〉 =
√
∑

i,j X
2
ij denotes its Frobenius norm. The largest and smallest eigenvalues

of matrix X are denoted as λmax(X) and λmin(X), respectively. For any matrix B ∈ Rm×n,

null(B) , {x ∈ Rn|Bx = 0} is the null space of B. Given a matrix B ∈ Rm×n, by Z ∈ null(B),


