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Abstract

When the coordinates of a set of points are known, the pairwise Euclidean distances

among the points can be easily computed. Conversely, if the Euclidean distance matrix

is given, a set of coordinates for those points can be computed through the well known

classical Multi-Dimensional Scaling (MDS). In this paper, we consider the case where

some of the distances are far from being accurate (containing large noises or even missing).

In such a situation, the order of the known distances (i.e., some distances are larger than

others) is valuable information that often yields far more accurate construction of the points

than just using the magnitude of the known distances. The methods making use of the

order information is collectively known as nonmetric MDS. A challenging computational

issue among all existing nonmetric MDS methods is that there are often a large number of

ordinal constraints. In this paper, we cast this problem as a matrix optimization problem

with ordinal constraints. We then adapt an existing smoothing Newton method to our

matrix problem. Extensive numerical results demonstrate the efficiency of the algorithm,

which can potentially handle a very large number of ordinal constraints.
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1. Introduction

Suppose that we are given the coordinates of a set of points, namely {x1, . . . ,xn} with

xi ∈ IRr. It is straightforward to compute the pairwise Euclidean distances: dij = ‖xi − xj‖,
i, j = 1, . . . , n. The matrix D = (d2ij) is known as the (squared) Euclidean Distance Matrix

(EDM) of those points. However, the inverse problem is more interesting and important (and

challenging). Suppose D is given. The method of the classical Multi-Dimensional Scaling

(cMDS) generates a set of such coordinates that preserve the pairwise distances in D. We give

a short description of it below. Let

J := I − 1

n
11T and B := −1

2
JDJ,
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where I is the n × n identity matrix and 1 is the (column) vector of all ones in IRn. In

literature, J is known as the centralization matrix and B is the double-centralized matrix of D

(also the Gram matrix of D because B is positive semidefinite). Suppose B admits the spectral

decomposition:

B = [p1, . . . ,pr]


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λ1

. . .

λr







pT
1
...

pT
r


 , (1.1)

where λ1, . . . , λr are positive eigenvalues of B (the rest are zero) and p1, . . . ,pr are the corre-

sponding orthonormal eigenvectors. Then the following coordinates x1, . . . ,xn obtained by

[x1,x2, . . . ,xn] :=
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preserve the known distances in the sense that ‖xi − xj‖ = dij for all i, j = 1, . . . , n. This is

the well known cMDS. We refer to [16, 25, 30, 31] and [4, 7, 8] for detailed description of cMDS

and its generalizations.

In almost all applications, D is not fully given or contains noise and in this case D is often

denoted by ∆. When ∆ is not far from a true EDM, cMDS works fairly well. This has been

justified in various situations including [28] on manifold learning and [9] where the noises can

be bounded. Instead of directly applying cMDS on ∆, one may also modify ∆ so as for it to be

a true EDM. Research on this line were mainly contributed from numerical linear algebra and

optimization and include e.g., [1,3,15,21,23,29]. Those methods, in addition to those discussed

in [4], belong to the category of metric MDS, which means that the magnitudes of the known

distances are far more important than the rest information. Metric MDS works well when the

noise in D is not at a very high level.

When D contains inaccurate distances whose errors cannot be regarded to be from random

noises, the magnitudes of the erroneous distances may have a disastrous effect on the embedding

constructions. Let us take a look at a simple example, which clearly demonstrates the undesired

effect. Network (a) in Fig. 1.1 is a true square network with the first point being in the center.

The true distance matrix is

D =




0 1 1 1 1

1 0 2 4 2

1 2 0 2 4

1 4 2 0 2

1 2 4 2 0



.

Now suppose the distances from the center to the rest points are messed up with other distances.

For example, D12 = D14 = 2 and D13 = D15 = 4. Comparing with the true distance, which is

1, the errors are large. We apply several well-known methods to the corresponding ∆ matrix

and the reconstructed networks are shown from (b) to (f) in Fig. 1.1. It can be seen that the

smoothing Newton method proposed in this paper is the only one which correctly recovers the

true network topology. In our experiments, we enforced the ordinal constraints:

D13 ≤ D12, D13 ≤ D14, D15 ≤ D12, D15 ≤ D14.

We note that those ordinal constraints are obeyed by the true network, but are violated by

the erroneous D. It is those explicitly enforced ordinal constraints that distinguish our method

from the rest.


