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Abstract

We study an explicit exponential scheme for the time discretisation of stochastic Schrö-

dinger Equations Driven by additive or Multiplicative Itô Noise. The numerical scheme is

shown to converge with strong order 1 if the noise is additive and with strong order 1/2 for

multiplicative noise. In addition, if the noise is additive, we show that the exact solutions

of the linear stochastic Schrödinger equations satisfy trace formulas for the expected mass,

energy, and momentum (i. e., linear drifts in these quantities). Furthermore, we inspect

the behaviour of the numerical solutions with respect to these trace formulas. Several

numerical simulations are presented and confirm our theoretical results.
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1. Introduction

We consider temporal discretisations of nonlinear stochastic Schrödinger Equations Driven

by Itô Noise

idu = ∆u dt+ F (x, u) dt+G(u) dW in R
d × (0,∞),

u(·, 0) = u0 in R
d,

(1.1)

where u = u(x, t), and i =
√
−1. The product between G and dW is of Itô type, and further

details on F and G and on the dimension d will be specified later. The stochastic process

{W (t)}t≥0 is a square integrable complex-valued Q-Wiener process with respect to a normal

filtration {Ft}t≥0 on a filtered probability space (Ω,F ,P, {Ft}t≥0). The regularity of the co-

variance operator Q will be specified later in the text. The initial value u0 is an F0-measurable

complex-valued function, which will be further specified below.

The Schrödinger equation is widely used within physics and takes several different forms

depending on the situation. It is used in hydrodynamics, nonlinear optics and plasma physics

to only mention a few areas. In certain physical situations it may be appropriate to incorporate

some kind of randomness into the equation. One possibility is to add a driving random force to

then obtain an equation of the form (1.1). See for example [7] and references therein for further

details.
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Stochastic Schrödinger equations have received much attention from a more theoretical point

of view during the last decades. Connected to the present article and without being exhaustive,

we mention the works [5, 6, 8] on Itô problems and [5, 7, 8, 31, 32] for the Stratonovich setting.

It is seldom possible to solve stochastic partial differential equations exactly, and efficien-

t numerical schemes are therefore needed. For the time integration of the above stochastic

Schrödinger equations, we will consider stochastic exponential integrators. These numerical

methods are explicit and easy to implement, furthermore they offer good geometric properties.

Exponential integrators are widely used and studied nowadays as witnessed by the recent re-

view [19] for the time integration of deterministic problems. Applications of such schemes to the

deterministic (nonlinear) Schrödinger equation can be found in, for example, [3,10,11,18,27–29]

and references therein. These numerical methods were recently investigated for stochastic

parabolic partial differential equations in, for example, [20, 23, 24] and for the stochastic wave

equations in [1, 12, 13, 26].

We now review previous works on temporal discretisations of stochastic Schrödinger equa-

tions. In [4] a Crank-Nicolson scheme is studied for the equation with nonlinearity F (u). First

order of convergence is obtained in the case of additive noise, and with multiplicative Itô noise

the convergence rate is one half. Observe that this numerical scheme is implicit. A stochastic

Schrödinger equation with Stratonovich noise is considered in [15], where, again, a Crank-

Nicolson scheme is studied for the equation with nonlinearity F (x, u) = λ|u|2σu, with λ = ±1

and σ > 0. The authors prove convergence to the exact solution and mass preservation of the

scheme. Further, in [21] a mass-preserving splitting scheme for Eq. (1.1) with F (x, u) = V (x)u

and G(u) = u is considered. The noise is of Stratonovich type and first order convergence is

obtained. In [22], V (x) is replaced by |u|2 and first order convergence is again obtained. Still

in the Stratonovich setting, [33] derives multi-symplectic schemes for stochastic Schrödinger

equations. We finally mention [2, 16], in which thorough numerical simulations are presented

for both additive noise and multiplicative Stratonovich noise.

In the present work we show that

• the exponential integrator applied to the linear stochastic Schrödinger equation without

potential and with additive noise converges strongly with order 1 and satisfies exact trace

formulas for the mass, the energy, and for the momentum;

• the exponential integrator applied to the linear stochastic Schrödinger equation with a

multiplicative potential of the form V (x)u and additive noise converges with strong order

1, but has a small error in the trace formulas for the mass and energy;

• the exponential integrator applied to stochastic Schrödinger Equations Driven by Multi-

plicative Itô Noise strongly converges with order 1/2.

We begin the exposition by introducing some notations and useful results that we will use

in our proofs. After that we will follow a similar approach as in [4]. That is, we will begin by

analysing the numerical method applied to the linear Schrödinger equation with additive noise

in Section 3. Then we study stochastic Schrödinger equations with a multiplicative potential

in Section 4 and finally we consider the stochastic Schrödinger equation with a multiplicative

potential and multiplicative noise in Section 5. For each of the above problems, we analyse the

speed of convergence of the exponential methods (in the strong sense) and for additive problems

we show some trace formulas (such results could be interpreted as weak error estimates). Various

numerical experiments accompany the presentation and illustrate the main properties of these

exponential methods when applied to stochastic Schrödinger Equations Driven by Itô Noise.


